
Graphene Documentation
Release 1.0

Syrus Akbary

Dec 11, 2022

Contents

1 Getting started 3
1.1 Introduction . 3
1.2 An example in Graphene . 3

2 Types Reference 7
2.1 Schema . 7
2.2 Scalars . 8
2.3 Lists and Non-Null . 13
2.4 ObjectType . 14
2.5 Enums . 21
2.6 Interfaces . 23
2.7 Unions . 25
2.8 Mutations . 26

3 Execution 31
3.1 Executing a query . 31
3.2 Middleware . 33
3.3 Dataloader . 34
3.4 File uploading . 36
3.5 Subscriptions . 36
3.6 Query Validation . 37

4 Relay 41
4.1 Nodes . 41
4.2 Connection . 43
4.3 Mutations . 43
4.4 Useful links . 44

5 Testing in Graphene 45
5.1 Testing tools . 45

6 API Reference 49
6.1 Schema . 49
6.2 Object types . 50
6.3 Fields (Mounted Types) . 53
6.4 Fields (Unmounted Types) . 55
6.5 GraphQL Scalars . 56

i

6.6 Graphene Scalars . 56
6.7 Enum . 56
6.8 Structures . 57
6.9 Type Extension . 57
6.10 Execution Metadata . 59

7 Integrations 61

ii

Graphene Documentation, Release 1.0

The documentation below is for the dev (prerelease) version of Graphene. To view the documentation for the latest
stable Graphene version go to the v2 docs.

Contents:

Contents 1

https://docs.graphene-python.org/en/stable/

Graphene Documentation, Release 1.0

2 Contents

CHAPTER 1

Getting started

1.1 Introduction

1.1.1 What is GraphQL?

GraphQL is a query language for your API.

It provides a standard way to:

• describe data provided by a server in a statically typed Schema

• request data in a Query which exactly describes your data requirements and

• receive data in a Response containing only the data you requested.

For an introduction to GraphQL and an overview of its concepts, please refer to the official GraphQL documentation.

1.1.2 What is Graphene?

Graphene is a library that provides tools to implement a GraphQL API in Python using a code-first approach.

Compare Graphene’s code-first approach to building a GraphQL API with schema-first approaches like Apollo Server
(JavaScript) or Ariadne (Python). Instead of writing GraphQL Schema Definition Language (SDL), we write Python
code to describe the data provided by your server.

Graphene is fully featured with integrations for the most popular web frameworks and ORMs. Graphene produces
schemas that are fully compliant with the GraphQL spec and provides tools and patterns for building a Relay-
Compliant API as well.

1.2 An example in Graphene

Let’s build a basic GraphQL schema to say “hello” and “goodbye” in Graphene.

3

http://graphql.org/learn/
https://www.apollographql.com/docs/apollo-server/
https://ariadnegraphql.org/

Graphene Documentation, Release 1.0

When we send a Query requesting only one Field, hello, and specify a value for the firstName Argument...

{
hello(firstName: "friend")

}

...we would expect the following Response containing only the data requested (the goodbye field is not resolved).

{
"data": {
"hello": "Hello friend!"

}
}

1.2.1 Requirements

• Python (3.6, 3.7, 3.8, 3.9, 3.10, pypy)

• Graphene (3.0)

1.2.2 Project setup

pip install "graphene>=3.0"

1.2.3 Creating a basic Schema

In Graphene, we can define a simple schema using the following code:

from graphene import ObjectType, String, Schema

class Query(ObjectType):
this defines a Field `hello` in our Schema with a single Argument `first_name`
By default, the argument name will automatically be camel-based into firstName

→˓in the generated schema
hello = String(first_name=String(default_value="stranger"))
goodbye = String()

our Resolver method takes the GraphQL context (root, info) as well as
Argument (first_name) for the Field and returns data for the query Response
def resolve_hello(root, info, first_name):

return f'Hello {first_name}!'

def resolve_goodbye(root, info):
return 'See ya!'

schema = Schema(query=Query)

A GraphQL Schema describes each Field in the data model provided by the server using scalar types like String, Int
and Enum and compound types like List and Object. For more details refer to the Graphene Types Reference.

Our schema can also define any number of Arguments for our Fields. This is a powerful way for a Query to describe
the exact data requirements for each Field.

For each Field in our Schema, we write a Resolver method to fetch data requested by a client’s Query using the
current context and Arguments. For more details, refer to this section on Resolvers.

4 Chapter 1. Getting started

Graphene Documentation, Release 1.0

1.2.4 Schema Definition Language (SDL)

In the GraphQL Schema Definition Language, we could describe the fields defined by our example code as shown
below.

type Query {
hello(firstName: String = "stranger"): String
goodbye: String

}

Further examples in this documentation will use SDL to describe schema created by ObjectTypes and other fields.

1.2.5 Querying

Then we can start querying our Schema by passing a GraphQL query string to execute:

we can query for our field (with the default argument)
query_string = '{ hello }'
result = schema.execute(query_string)
print(result.data['hello'])
"Hello stranger!"

or passing the argument in the query
query_with_argument = '{ hello(firstName: "GraphQL") }'
result = schema.execute(query_with_argument)
print(result.data['hello'])
"Hello GraphQL!"

1.2.6 Next steps

Congrats! You got your first Graphene schema working!

Normally, we don’t need to directly execute a query string against our schema as Graphene provides many useful
Integrations with popular web frameworks like Flask and Django. Check out Integrations for more information on
how to get started serving your GraphQL API.

1.2. An example in Graphene 5

https://graphql.org/learn/schema/

Graphene Documentation, Release 1.0

6 Chapter 1. Getting started

CHAPTER 2

Types Reference

2.1 Schema

A GraphQL Schema defines the types and relationships between Fields in your API.

A Schema is created by supplying the root ObjectType of each operation, query (mandatory), mutation and subscrip-
tion.

Schema will collect all type definitions related to the root operations and then supply them to the validator and executor.

my_schema = Schema(
query=MyRootQuery,
mutation=MyRootMutation,
subscription=MyRootSubscription

)

A Root Query is just a special ObjectType that defines the fields that are the entrypoint for your API. Root Mutation
and Root Subscription are similar to Root Query, but for different operation types:

• Query fetches data

• Mutation changes data and retrieves the changes

• Subscription sends changes to clients in real-time

Review the GraphQL documentation on Schema for a brief overview of fields, schema and operations.

2.1.1 Querying

To query a schema, call the execute method on it. See Executing a query for more details.

query_string = 'query whoIsMyBestFriend { myBestFriend { lastName } }'
my_schema.execute(query_string)

7

https://graphql.org/learn/schema/

Graphene Documentation, Release 1.0

2.1.2 Types

There are some cases where the schema cannot access all of the types that we plan to have. For example, when a field
returns an Interface, the schema doesn’t know about any of the implementations.

In this case, we need to use the types argument when creating the Schema:

my_schema = Schema(
query=MyRootQuery,
types=[SomeExtraObjectType,]

)

2.1.3 Auto camelCase field names

By default all field and argument names (that are not explicitly set with the name arg) will be converted from
snake_case to camelCase (as the API is usually being consumed by a js/mobile client)

For example with the ObjectType the last_name field name is converted to lastName:

class Person(graphene.ObjectType):
last_name = graphene.String()
other_name = graphene.String(name='_other_Name')

In case you don’t want to apply this transformation, provide a name argument to the field constructor. other_name
converts to _other_Name (without further transformations).

Your query should look like:

{
lastName
_other_Name

}

To disable this behavior, set the auto_camelcase to False upon schema instantiation:

my_schema = Schema(
query=MyRootQuery,
auto_camelcase=False,

)

2.2 Scalars

Scalar types represent concrete values at the leaves of a query. There are several built in types that Graphene provides
out of the box which represent common values in Python. You can also create your own Scalar types to better express
values that you might have in your data model.

All Scalar types accept the following arguments. All are optional:

name: string

Override the name of the Field.

description: string

A description of the type to show in the GraphiQL browser.

required: boolean

8 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

If True, the server will enforce a value for this field. See NonNull. Default is False.

deprecation_reason: string

Provide a deprecation reason for the Field.

default_value: any

Provide a default value for the Field.

2.2.1 Built in scalars

Graphene defines the following base Scalar Types that match the default GraphQL types:

graphene.String

Represents textual data, represented as UTF-8 character sequences. The String type is most often used by
GraphQL to represent free-form human-readable text.

graphene.Int

Represents non-fractional signed whole numeric values. Int is a signed 32-bit integer per the GraphQL
spec

graphene.Float

Represents signed double-precision fractional values as specified by IEEE 754.

graphene.Boolean

Represents true or false.

graphene.ID

Represents a unique identifier, often used to refetch an object or as key for a cache. The ID type appears
in a JSON response as a String; however, it is not intended to be human-readable. When expected as an
input type, any string (such as “4”) or integer (such as 4) input value will be accepted as an ID.

Graphene also provides custom scalars for common values:

graphene.Date

Represents a Date value as specified by iso8601.

import datetime
from graphene import Schema, ObjectType, Date

class Query(ObjectType):
one_week_from = Date(required=True, date_input=Date(required=True))

2.2. Scalars 9

https://graphql.org/learn/schema/#scalar-types
https://facebook.github.io/graphql/June2018/#sec-Int
https://facebook.github.io/graphql/June2018/#sec-Int
http://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/ISO_8601

Graphene Documentation, Release 1.0

def resolve_one_week_from(root, info, date_input):
assert date_input == datetime.date(2006, 1, 2)
return date_input + datetime.timedelta(weeks=1)

schema = Schema(query=Query)

results = schema.execute("""
query {

oneWeekFrom(dateInput: "2006-01-02")
}

""")

assert results.data == {"oneWeekFrom": "2006-01-09"}

graphene.DateTime

Represents a DateTime value as specified by iso8601.

import datetime
from graphene import Schema, ObjectType, DateTime

class Query(ObjectType):
one_hour_from = DateTime(required=True, datetime_input=DateTime(required=True))

def resolve_one_hour_from(root, info, datetime_input):
assert datetime_input == datetime.datetime(2006, 1, 2, 15, 4, 5)
return datetime_input + datetime.timedelta(hours=1)

schema = Schema(query=Query)

results = schema.execute("""
query {

oneHourFrom(datetimeInput: "2006-01-02T15:04:05")
}

""")

assert results.data == {"oneHourFrom": "2006-01-02T16:04:05"}

graphene.Time

Represents a Time value as specified by iso8601.

import datetime
from graphene import Schema, ObjectType, Time

class Query(ObjectType):
one_hour_from = Time(required=True, time_input=Time(required=True))

def resolve_one_hour_from(root, info, time_input):
assert time_input == datetime.time(15, 4, 5)
tmp_time_input = datetime.datetime.combine(datetime.date(1, 1, 1), time_input)
return (tmp_time_input + datetime.timedelta(hours=1)).time()

schema = Schema(query=Query)

10 Chapter 2. Types Reference

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

Graphene Documentation, Release 1.0

results = schema.execute("""
query {

oneHourFrom(timeInput: "15:04:05")
}

""")

assert results.data == {"oneHourFrom": "16:04:05"}

graphene.Decimal

Represents a Python Decimal value.

import decimal
from graphene import Schema, ObjectType, Decimal

class Query(ObjectType):
add_one_to = Decimal(required=True, decimal_input=Decimal(required=True))

def resolve_add_one_to(root, info, decimal_input):
assert decimal_input == decimal.Decimal("10.50")
return decimal_input + decimal.Decimal("1")

schema = Schema(query=Query)

results = schema.execute("""
query {

addOneTo(decimalInput: "10.50")
}

""")

assert results.data == {"addOneTo": "11.50"}

graphene.JSONString

Represents a JSON string.

from graphene import Schema, ObjectType, JSONString, String

class Query(ObjectType):
update_json_key = JSONString(

required=True,
json_input=JSONString(required=True),
key=String(required=True),
value=String(required=True)

)

def resolve_update_json_key(root, info, json_input, key, value):
assert json_input == {"name": "Jane"}
json_input[key] = value
return json_input

schema = Schema(query=Query)

results = schema.execute("""
query {

2.2. Scalars 11

Graphene Documentation, Release 1.0

updateJsonKey(jsonInput: "{\\"name\\": \\"Jane\\"}", key: "name", value: "Beth
→˓")

}
""")

assert results.data == {"updateJsonKey": "{\"name\": \"Beth\"}"}

graphene.Base64

Represents a Base64 encoded string.

from graphene import Schema, ObjectType, Base64

class Query(ObjectType):
increment_encoded_id = Base64(

required=True,
base64_input=Base64(required=True),

)

def resolve_increment_encoded_id(root, info, base64_input):
assert base64_input == "4"
return int(base64_input) + 1

schema = Schema(query=Query)

results = schema.execute("""
query {

incrementEncodedId(base64Input: "NA==")
}

""")

assert results.data == {"incrementEncodedId": "NQ=="}

2.2.2 Custom scalars

You can create custom scalars for your schema. The following is an example for creating a DateTime scalar:

import datetime
from graphene.types import Scalar
from graphql.language import ast

class DateTime(Scalar):
'''DateTime Scalar Description'''

@staticmethod
def serialize(dt):

return dt.isoformat()

@staticmethod
def parse_literal(node, _variables=None):

if isinstance(node, ast.StringValue):
return datetime.datetime.strptime(

node.value, "%Y-%m-%dT%H:%M:%S.%f")

@staticmethod

12 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

def parse_value(value):
return datetime.datetime.strptime(value, "%Y-%m-%dT%H:%M:%S.%f")

2.2.3 Mounting Scalars

Scalars mounted in a ObjectType, Interface or Mutation act as Fields.

class Person(graphene.ObjectType):
name = graphene.String()

Is equivalent to:
class Person(graphene.ObjectType):

name = graphene.Field(graphene.String)

Note: when using the Field constructor directly, pass the type and not an instance.

Types mounted in a Field act as Arguments.

graphene.Field(graphene.String, to=graphene.String())

Is equivalent to:
graphene.Field(graphene.String, to=graphene.Argument(graphene.String))

2.3 Lists and Non-Null

Object types, scalars, and enums are the only kinds of types you can define in Graphene. But when you use the types
in other parts of the schema, or in your query variable declarations, you can apply additional type modifiers that affect
validation of those values.

2.3.1 NonNull

import graphene

class Character(graphene.ObjectType):
name = graphene.NonNull(graphene.String)

Here, we’re using a String type and marking it as Non-Null by wrapping it using the NonNull class. This means
that our server always expects to return a non-null value for this field, and if it ends up getting a null value that will
actually trigger a GraphQL execution error, letting the client know that something has gone wrong.

The previous NonNull code snippet is also equivalent to:

import graphene

class Character(graphene.ObjectType):
name = graphene.String(required=True)

2.3. Lists and Non-Null 13

Graphene Documentation, Release 1.0

2.3.2 List

import graphene

class Character(graphene.ObjectType):
appears_in = graphene.List(graphene.String)

Lists work in a similar way: We can use a type modifier to mark a type as a List, which indicates that this field will
return a list of that type. It works the same for arguments, where the validation step will expect a list for that value.

2.3.3 NonNull Lists

By default items in a list will be considered nullable. To define a list without any nullable items the type needs to be
marked as NonNull. For example:

import graphene

class Character(graphene.ObjectType):
appears_in = graphene.List(graphene.NonNull(graphene.String))

The above results in the type definition:

type Character {
appearsIn: [String!]

}

2.4 ObjectType

A Graphene ObjectType is the building block used to define the relationship between Fields in your Schema and how
their data is retrieved.

The basics:

• Each ObjectType is a Python class that inherits from graphene.ObjectType.

• Each attribute of the ObjectType represents a Field.

• Each Field has a resolver method to fetch data (or Default Resolver).

2.4.1 Quick example

This example model defines a Person, with a first and a last name:

from graphene import ObjectType, String

class Person(ObjectType):
first_name = String()
last_name = String()
full_name = String()

def resolve_full_name(parent, info):
return f"{parent.first_name} {parent.last_name}"

14 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

This ObjectType defines the field first_name, last_name, and full_name. Each field is specified as a class attribute,
and each attribute maps to a Field. Data is fetched by our resolve_full_name resolver method for full_name
field and the Default Resolver for other fields.

The above Person ObjectType has the following schema representation:

type Person {
firstName: String
lastName: String
fullName: String

}

2.4.2 Resolvers

A Resolver is a method that helps us answer Queries by fetching data for a Field in our Schema.

Resolvers are lazily executed, so if a field is not included in a query, its resolver will not be executed.

Each field on an ObjectType in Graphene should have a corresponding resolver method to fetch data. This resolver
method should match the field name. For example, in the Person type above, the full_name field is resolved by
the method resolve_full_name.

Each resolver method takes the parameters:

• Parent Value Object (parent) for the value object use to resolve most fields

• GraphQL Execution Info (info) for query and schema meta information and per-request context

• GraphQL Arguments (**kwargs) as defined on the Field.

Resolver Parameters

Parent Value Object (parent)

This parameter is typically used to derive the values for most fields on an ObjectType.

The first parameter of a resolver method (parent) is the value object returned from the resolver of the parent field. If
there is no parent field, such as a root Query field, then the value for parent is set to the root_value configured
while executing the query (default None). See Executing a query for more details on executing queries.

Resolver example

If we have a schema with Person type and one field on the root query.

from graphene import ObjectType, String, Field

class Person(ObjectType):
full_name = String()

def resolve_full_name(parent, info):
return f"{parent.first_name} {parent.last_name}"

class Query(ObjectType):
me = Field(Person)

def resolve_me(parent, info):

2.4. ObjectType 15

Graphene Documentation, Release 1.0

returns an object that represents a Person
return get_human(name="Luke Skywalker")

When we execute a query against that schema.

schema = Schema(query=Query)

query_string = "{ me { fullName } }"
result = schema.execute(query_string)

assert result.data["me"] == {"fullName": "Luke Skywalker"}

Then we go through the following steps to resolve this query:

• parent is set with the root_value from query execution (None).

• Query.resolve_me called with parent None which returns a value object Person("Luke",
"Skywalker").

• This value object is then used as parentwhile calling Person.resolve_full_name to resolve the scalar
String value “Luke Skywalker”.

• The scalar value is serialized and sent back in the query response.

Each resolver returns the next Parent Value Object (parent) to be used in executing the following resolver in the
chain. If the Field is a Scalar type, that value will be serialized and sent in the Response. Otherwise, while resolving
Compound types like ObjectType, the value be passed forward as the next Parent Value Object (parent).

Naming convention

This Parent Value Object (parent) is sometimes named obj, parent, or source in other GraphQL documentation.
It can also be named after the value object being resolved (ex. root for a root Query or Mutation, and person for
a Person value object). Sometimes this argument will be named self in Graphene code, but this can be misleading
due to Implicit staticmethod while executing queries in Graphene.

GraphQL Execution Info (info)

The second parameter provides two things:

• reference to meta information about the execution of the current GraphQL Query (fields, schema, parsed query,
etc.)

• access to per-request contextwhich can be used to store user authentication, data loader instances or anything
else useful for resolving the query.

Only context will be required for most applications. See Context for more information about setting context.

GraphQL Arguments (**kwargs)

Any arguments that a field defines gets passed to the resolver function as keyword arguments. For example:

from graphene import ObjectType, Field, String

class Query(ObjectType):
human_by_name = Field(Human, name=String(required=True))

16 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

def resolve_human_by_name(parent, info, name):
return get_human(name=name)

You can then execute the following query:

query {
humanByName(name: "Luke Skywalker") {

firstName
lastName

}
}

Note: There are several arguments to a field that are “reserved” by Graphene (see Fields (Mounted Types)). You can
still define an argument that clashes with one of these fields by using the args parameter like so:

from graphene import ObjectType, Field, String

class Query(ObjectType):
answer = String(args={'description': String()})

def resolve_answer(parent, info, description):
return description

Convenience Features of Graphene Resolvers

Implicit staticmethod

One surprising feature of Graphene is that all resolver methods are treated implicitly as staticmethods. This means that,
unlike other methods in Python, the first argument of a resolver is never self while it is being executed by Graphene.
Instead, the first argument is always Parent Value Object (parent). In practice, this is very convenient as, in GraphQL,
we are almost always more concerned with the using the parent value object to resolve queries than attributes on the
Python object itself.

The two resolvers in this example are effectively the same.

from graphene import ObjectType, String

class Person(ObjectType):
first_name = String()
last_name = String()

@staticmethod
def resolve_first_name(parent, info):

'''
Decorating a Python method with `staticmethod` ensures that `self` will not

→˓be provided as an
argument. However, Graphene does not need this decorator for this behavior.
'''
return parent.first_name

def resolve_last_name(parent, info):
'''
Normally the first argument for this method would be `self`, but Graphene

→˓executes this as
a staticmethod implicitly.
'''

2.4. ObjectType 17

Graphene Documentation, Release 1.0

return parent.last_name

...

If you prefer your code to be more explicit, feel free to use @staticmethod decorators. Otherwise, your code may
be cleaner without them!

Default Resolver

If a resolver method is not defined for a Field attribute on our ObjectType, Graphene supplies a default resolver.

If the Parent Value Object (parent) is a dictionary, the resolver will look for a dictionary key matching the field name.
Otherwise, the resolver will get the attribute from the parent value object matching the field name.

from collections import namedtuple

from graphene import ObjectType, String, Field, Schema

PersonValueObject = namedtuple("Person", ["first_name", "last_name"])

class Person(ObjectType):
first_name = String()
last_name = String()

class Query(ObjectType):
me = Field(Person)
my_best_friend = Field(Person)

def resolve_me(parent, info):
always pass an object for `me` field
return PersonValueObject(first_name="Luke", last_name="Skywalker")

def resolve_my_best_friend(parent, info):
always pass a dictionary for `my_best_fiend_field`
return {"first_name": "R2", "last_name": "D2"}

schema = Schema(query=Query)
result = schema.execute('''

{
me { firstName lastName }
myBestFriend { firstName lastName }

}
''')
With default resolvers we can resolve attributes from an object..
assert result.data["me"] == {"firstName": "Luke", "lastName": "Skywalker"}

With default resolvers, we can also resolve keys from a dictionary..
assert result.data["myBestFriend"] == {"firstName": "R2", "lastName": "D2"}

Advanced

GraphQL Argument defaults

If you define an argument for a field that is not required (and in a query execution it is not provided as an argument) it
will not be passed to the resolver function at all. This is so that the developer can differentiate between a undefined

18 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

value for an argument and an explicit null value.

For example, given this schema:

from graphene import ObjectType, String

class Query(ObjectType):
hello = String(required=True, name=String())

def resolve_hello(parent, info, name):
return name if name else 'World'

And this query:

query {
hello

}

An error will be thrown:

TypeError: resolve_hello() missing 1 required positional argument: 'name'

You can fix this error in several ways. Either by combining all keyword arguments into a dict:

from graphene import ObjectType, String

class Query(ObjectType):
hello = String(required=True, name=String())

def resolve_hello(parent, info, **kwargs):
name = kwargs.get('name', 'World')
return f'Hello, {name}!'

Or by setting a default value for the keyword argument:

from graphene import ObjectType, String

class Query(ObjectType):
hello = String(required=True, name=String())

def resolve_hello(parent, info, name='World'):
return f'Hello, {name}!'

One can also set a default value for an Argument in the GraphQL schema itself using Graphene!

from graphene import ObjectType, String

class Query(ObjectType):
hello = String(

required=True,
name=String(default_value='World')

)

def resolve_hello(parent, info, name):
return f'Hello, {name}!'

2.4. ObjectType 19

Graphene Documentation, Release 1.0

Resolvers outside the class

A field can use a custom resolver from outside the class:

from graphene import ObjectType, String

def resolve_full_name(person, info):
return f"{person.first_name} {person.last_name}"

class Person(ObjectType):
first_name = String()
last_name = String()
full_name = String(resolver=resolve_full_name)

Instances as value objects

Graphene ObjectTypes can act as value objects too. So with the previous example you could use Person to
capture data for each of the ObjectType‘s fields.

peter = Person(first_name='Peter', last_name='Griffin')

peter.first_name # prints "Peter"
peter.last_name # prints "Griffin"

Field camelcasing

Graphene automatically camelcases fields on ObjectType from field_name to fieldName to conform with
GraphQL standards. See Auto camelCase field names for more information.

2.4.3 ObjectType Configuration - Meta class

Graphene uses a Meta inner class on ObjectType to set different options.

GraphQL type name

By default the type name in the GraphQL schema will be the same as the class name that defines the ObjectType.
This can be changed by setting the name property on the Meta class:

from graphene import ObjectType

class MyGraphQlSong(ObjectType):
class Meta:

name = 'Song'

GraphQL Description

The schema description of an ObjectType can be set as a docstring on the Python object or on the Meta inner class.

20 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

from graphene import ObjectType

class MyGraphQlSong(ObjectType):
''' We can set the schema description for an Object Type here on a docstring '''
class Meta:

description = 'But if we set the description in Meta, this value is used
→˓instead'

Interfaces & Possible Types

Setting interfaces in Meta inner class specifies the GraphQL Interfaces that this Object implements.

Providing possible_types helps Graphene resolve ambiguous types such as interfaces or Unions.

See Interfaces for more information.

from graphene import ObjectType, Node

Song = namedtuple('Song', ('title', 'artist'))

class MyGraphQlSong(ObjectType):
class Meta:

interfaces = (Node,)
possible_types = (Song,)

2.5 Enums

An Enum is a special GraphQL type that represents a set of symbolic names (members) bound to unique, constant
values.

2.5.1 Definition

You can create an Enum using classes:

import graphene

class Episode(graphene.Enum):
NEWHOPE = 4
EMPIRE = 5
JEDI = 6

But also using instances of Enum:

Episode = graphene.Enum('Episode', [('NEWHOPE', 4), ('EMPIRE', 5), ('JEDI', 6)])

2.5.2 Value descriptions

It’s possible to add a description to an enum value, for that the enum value needs to have the description property
on it.

2.5. Enums 21

Graphene Documentation, Release 1.0

class Episode(graphene.Enum):
NEWHOPE = 4
EMPIRE = 5
JEDI = 6

@property
def description(self):

if self == Episode.NEWHOPE:
return 'New Hope Episode'

return 'Other episode'

2.5.3 Usage with Python Enums

In case the Enums are already defined it’s possible to reuse them using the Enum.from_enum function.

graphene.Enum.from_enum(AlreadyExistingPyEnum)

Enum.from_enum supports a description and deprecation_reason lambdas as input so you can add
description etc. to your enum without changing the original:

graphene.Enum.from_enum(
AlreadyExistingPyEnum,
description=lambda v: return 'foo' if v == AlreadyExistingPyEnum.Foo else 'bar'

)

2.5.4 Notes

graphene.Enum uses enum.Enum internally (or a backport if that’s not available) and can be used in a similar
way, with the exception of member getters.

In the Python Enum implementation you can access a member by initing the Enum.

from enum import Enum

class Color(Enum):
RED = 1
GREEN = 2
BLUE = 3

assert Color(1) == Color.RED

However, in Graphene Enum you need to call .get to have the same effect:

from graphene import Enum

class Color(Enum):
RED = 1
GREEN = 2
BLUE = 3

assert Color.get(1) == Color.RED

22 Chapter 2. Types Reference

https://docs.python.org/3/library/enum.html

Graphene Documentation, Release 1.0

2.6 Interfaces

An Interface is an abstract type that defines a certain set of fields that a type must include to implement the interface.

For example, you can define an Interface Character that represents any character in the Star Wars trilogy:

import graphene

class Character(graphene.Interface):
id = graphene.ID(required=True)
name = graphene.String(required=True)
friends = graphene.List(lambda: Character)

Any ObjectType that implements Character will have these exact fields, with these arguments and return types.

For example, here are some types that might implement Character:

class Human(graphene.ObjectType):
class Meta:

interfaces = (Character,)

starships = graphene.List(Starship)
home_planet = graphene.String()

class Droid(graphene.ObjectType):
class Meta:

interfaces = (Character,)

primary_function = graphene.String()

Both of these types have all of the fields from the Character interface, but also bring in extra fields, home_planet,
starships and primary_function, that are specific to that particular type of character.

The full GraphQL schema definition will look like this:

interface Character {
id: ID!
name: String!
friends: [Character]

}

type Human implements Character {
id: ID!
name: String!
friends: [Character]
starships: [Starship]
homePlanet: String

}

type Droid implements Character {
id: ID!
name: String!
friends: [Character]
primaryFunction: String

}

Interfaces are useful when you want to return an object or set of objects, which might be of several different types.

For example, you can define a field hero that resolves to any Character, depending on the episode, like this:

2.6. Interfaces 23

Graphene Documentation, Release 1.0

class Query(graphene.ObjectType):
hero = graphene.Field(

Character,
required=True,
episode=graphene.Int(required=True)

)

def resolve_hero(root, info, episode):
Luke is the hero of Episode V
if episode == 5:

return get_human(name='Luke Skywalker')
return get_droid(name='R2-D2')

schema = graphene.Schema(query=Query, types=[Human, Droid])

This allows you to directly query for fields that exist on the Character interface as well as selecting specific fields on
any type that implements the interface using inline fragments.

For example, the following query:

query HeroForEpisode($episode: Int!) {
hero(episode: $episode) {

__typename
name
... on Droid {

primaryFunction
}
... on Human {

homePlanet
}

}
}

Will return the following data with variables { "episode": 4 }:

{
"data": {

"hero": {
"__typename": "Droid",
"name": "R2-D2",
"primaryFunction": "Astromech"

}
}

}

And different data with the variables { "episode": 5 }:

{
"data": {

"hero": {
"__typename": "Human",
"name": "Luke Skywalker",
"homePlanet": "Tatooine"

}
}

}

24 Chapter 2. Types Reference

https://graphql.org/learn/queries/#inline-fragments

Graphene Documentation, Release 1.0

2.6.1 Resolving data objects to types

As you build out your schema in Graphene it’s common for your resolvers to return objects that represent the data
backing your GraphQL types rather than instances of the Graphene types (e.g. Django or SQLAlchemy models). This
works well with ObjectType and Scalar fields, however when you start using Interfaces you might come across
this error:

"Abstract type Character must resolve to an Object type at runtime for field Query.
→˓hero ..."

This happens because Graphene doesn’t have enough information to convert the data object into a Graphene type
needed to resolve the Interface. To solve this you can define a resolve_type class method on the Interface
which maps a data object to a Graphene type:

class Character(graphene.Interface):
id = graphene.ID(required=True)
name = graphene.String(required=True)

@classmethod
def resolve_type(cls, instance, info):

if instance.type == 'DROID':
return Droid

return Human

2.7 Unions

Union types are very similar to interfaces, but they don’t get to specify any common fields between the types.

The basics:

• Each Union is a Python class that inherits from graphene.Union.

• Unions don’t have any fields on it, just links to the possible ObjectTypes.

2.7.1 Quick example

This example model defines several ObjectTypes with their own fields. SearchResult is the implementation of
Union of this object types.

import graphene

class Human(graphene.ObjectType):
name = graphene.String()
born_in = graphene.String()

class Droid(graphene.ObjectType):
name = graphene.String()
primary_function = graphene.String()

class Starship(graphene.ObjectType):
name = graphene.String()
length = graphene.Int()

class SearchResult(graphene.Union):

2.7. Unions 25

Graphene Documentation, Release 1.0

class Meta:
types = (Human, Droid, Starship)

Wherever we return a SearchResult type in our schema, we might get a Human, a Droid, or a Starship. Note that
members of a union type need to be concrete object types; you can’t create a union type out of interfaces or other
unions.

The above types have the following representation in a schema:

type Droid {
name: String
primaryFunction: String

}

type Human {
name: String
bornIn: String

}

type Ship {
name: String
length: Int

}

union SearchResult = Human | Droid | Starship

2.8 Mutations

A Mutation is a special ObjectType that also defines an Input.

2.8.1 Quick example

This example defines a Mutation:

import graphene

class CreatePerson(graphene.Mutation):
class Arguments:

name = graphene.String()

ok = graphene.Boolean()
person = graphene.Field(lambda: Person)

def mutate(root, info, name):
person = Person(name=name)
ok = True
return CreatePerson(person=person, ok=ok)

person and ok are the output fields of the Mutation when it is resolved.

Arguments attributes are the arguments that the Mutation CreatePerson needs for resolving, in this case name
will be the only argument for the mutation.

mutate is the function that will be applied once the mutation is called. This method is just a special resolver that we
can change data within. It takes the same arguments as the standard query Resolver Parameters.

26 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

So, we can finish our schema like this:

... the Mutation Class

class Person(graphene.ObjectType):
name = graphene.String()
age = graphene.Int()

class MyMutations(graphene.ObjectType):
create_person = CreatePerson.Field()

We must define a query for our schema
class Query(graphene.ObjectType):

person = graphene.Field(Person)

schema = graphene.Schema(query=Query, mutation=MyMutations)

2.8.2 Executing the Mutation

Then, if we query (schema.execute(query_str)) the following:

mutation myFirstMutation {
createPerson(name:"Peter") {

person {
name

}
ok

}
}

We should receive:

{
"createPerson": {

"person" : {
"name": "Peter"

},
"ok": true

}
}

2.8.3 InputFields and InputObjectTypes

InputFields are used in mutations to allow nested input data for mutations.

To use an InputField you define an InputObjectType that specifies the structure of your input data:

import graphene

class PersonInput(graphene.InputObjectType):
name = graphene.String(required=True)
age = graphene.Int(required=True)

class CreatePerson(graphene.Mutation):
class Arguments:

person_data = PersonInput(required=True)

2.8. Mutations 27

Graphene Documentation, Release 1.0

person = graphene.Field(Person)

def mutate(root, info, person_data=None):
person = Person(

name=person_data.name,
age=person_data.age

)
return CreatePerson(person=person)

Note that name and age are part of person_data now.

Using the above mutation your new query would look like this:

mutation myFirstMutation {
createPerson(personData: {name:"Peter", age: 24}) {

person {
name,
age

}
}

}

InputObjectTypes can also be fields of InputObjectTypes allowing you to have as complex of input data as you need:

import graphene

class LatLngInput(graphene.InputObjectType):
lat = graphene.Float()
lng = graphene.Float()

#A location has a latlng associated to it
class LocationInput(graphene.InputObjectType):

name = graphene.String()
latlng = graphene.InputField(LatLngInput)

2.8.4 Output type example

To return an existing ObjectType instead of a mutation-specific type, set the Output attribute to the desired Object-
Type:

import graphene

class CreatePerson(graphene.Mutation):
class Arguments:

name = graphene.String()

Output = Person

def mutate(root, info, name):
return Person(name=name)

Then, if we query (schema.execute(query_str)) with the following:

mutation myFirstMutation {
createPerson(name:"Peter") {

28 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

name
__typename

}
}

We should receive:

{
"createPerson": {

"name": "Peter",
"__typename": "Person"

}
}

2.8. Mutations 29

Graphene Documentation, Release 1.0

30 Chapter 2. Types Reference

CHAPTER 3

Execution

3.1 Executing a query

For executing a query against a schema, you can directly call the execute method on it.

from graphene import Schema

schema = Schema(...)
result = schema.execute('{ name }')

result represents the result of execution. result.data is the result of executing the query, result.errors
is None if no errors occurred, and is a non-empty list if an error occurred.

3.1.1 Context

You can pass context to a query via context.

from graphene import ObjectType, String, Schema

class Query(ObjectType):
name = String()

def resolve_name(root, info):
return info.context.get('name')

schema = Schema(Query)
result = schema.execute('{ name }', context={'name': 'Syrus'})
assert result.data['name'] == 'Syrus'

3.1.2 Variables

You can pass variables to a query via variables.

31

Graphene Documentation, Release 1.0

from graphene import ObjectType, Field, ID, Schema

class Query(ObjectType):
user = Field(User, id=ID(required=True))

def resolve_user(root, info, id):
return get_user_by_id(id)

schema = Schema(Query)
result = schema.execute(

'''
query getUser($id: ID) {

user(id: $id) {
id
firstName
lastName

}
}

''',
variables={'id': 12},

)

3.1.3 Root Value

Value used for Parent Value Object (parent) in root queries and mutations can be overridden using root parameter.

from graphene import ObjectType, Field, Schema

class Query(ObjectType):
me = Field(User)

def resolve_user(root, info):
return {'id': root.id, 'firstName': root.name}

schema = Schema(Query)
user_root = User(id=12, name='bob')
result = schema.execute(

'''
query getUser {

user {
id
firstName
lastName

}
}
''',
root=user_root

)
assert result.data['user']['id'] == user_root.id

3.1.4 Operation Name

If there are multiple operations defined in a query string, operation_name should be used to indicate which should
be executed.

32 Chapter 3. Execution

Graphene Documentation, Release 1.0

from graphene import ObjectType, Field, Schema

class Query(ObjectType):
user = Field(User)

def resolve_user(root, info):
return get_user_by_id(12)

schema = Schema(Query)
query_string = '''

query getUserWithFirstName {
user {

id
firstName
lastName

}
}
query getUserWithFullName {

user {
id
fullName

}
}

'''
result = schema.execute(

query_string,
operation_name='getUserWithFullName'

)
assert result.data['user']['fullName']

3.2 Middleware

You can use middleware to affect the evaluation of fields in your schema.

A middleware is any object or function that responds to resolve(next_middleware, *args).

Inside that method, it should either:

• Send resolve to the next middleware to continue the evaluation; or

• Return a value to end the evaluation early.

3.2.1 Resolve arguments

Middlewares resolve is invoked with several arguments:

• next represents the execution chain. Call next to continue evaluation.

• root is the root value object passed throughout the query.

• info is the resolver info.

• args is the dict of arguments passed to the field.

3.2. Middleware 33

Graphene Documentation, Release 1.0

3.2.2 Example

This middleware only continues evaluation if the field_name is not 'user'

class AuthorizationMiddleware(object):
def resolve(self, next, root, info, **args):

if info.field_name == 'user':
return None

return next(root, info, **args)

And then execute it with:

result = schema.execute('THE QUERY', middleware=[AuthorizationMiddleware()])

If the middleware argument includes multiple middlewares, these middlewares will be executed bottom-up, i.e.
from last to first.

3.2.3 Functional example

Middleware can also be defined as a function. Here we define a middleware that logs the time it takes to resolve each
field:

from time import time as timer

def timing_middleware(next, root, info, **args):
start = timer()
return_value = next(root, info, **args)
duration = round((timer() - start) * 1000, 2)
parent_type_name = root._meta.name if root and hasattr(root, '_meta') else ''
logger.debug(f"{parent_type_name}.{info.field_name}: {duration} ms")
return return_value

And then execute it with:

result = schema.execute('THE QUERY', middleware=[timing_middleware])

3.3 Dataloader

DataLoader is a generic utility to be used as part of your application’s data fetching layer to provide a simplified and
consistent API over various remote data sources such as databases or web services via batching and caching. It is
provided by a separate package aiodataloader <https://pypi.org/project/aiodataloader/>.

3.3.1 Batching

Batching is not an advanced feature, it’s DataLoader’s primary feature. Create loaders by providing a batch loading
function.

from aiodataloader import DataLoader

class UserLoader(DataLoader):
async def batch_load_fn(self, keys):

Here we call a function to return a user for each key in keys
return [get_user(id=key) for key in keys]

34 Chapter 3. Execution

Graphene Documentation, Release 1.0

A batch loading async function accepts a list of keys, and returns a list of values.

DataLoader will coalesce all individual loads which occur within a single frame of execution (executed once the
wrapping event loop is resolved) and then call your batch function with all requested keys.

user_loader = UserLoader()

user1 = await user_loader.load(1)
user1_best_friend = await user_loader.load(user1.best_friend_id))

user2 = await user_loader.load(2)
user2_best_friend = await user_loader.load(user2.best_friend_id))

A naive application may have issued four round-trips to a backend for the required information, but with
DataLoader this application will make at most two.

Note that loaded values are one-to-one with the keys and must have the same order. This means that if you load all
values from a single query, you must make sure that you then order the query result for the results to match the keys:

class UserLoader(DataLoader):
async def batch_load_fn(self, keys):

users = {user.id: user for user in User.objects.filter(id__in=keys)}
return [users.get(user_id) for user_id in keys]

DataLoader allows you to decouple unrelated parts of your application without sacrificing the performance of
batch data-loading. While the loader presents an API that loads individual values, all concurrent requests will be
coalesced and presented to your batch loading function. This allows your application to safely distribute data fetching
requirements throughout your application and maintain minimal outgoing data requests.

3.3.2 Using with Graphene

DataLoader pairs nicely well with Graphene/GraphQL. GraphQL fields are designed to be stand-alone functions.
Without a caching or batching mechanism, it’s easy for a naive GraphQL server to issue new database requests each
time a field is resolved.

Consider the following GraphQL request:

{
me {
name
bestFriend {

name
}
friends(first: 5) {

name
bestFriend {

name
}

}
}

}

If me, bestFriend and friends each need to send a request to the backend, there could be at most 13 database
requests!

When using DataLoader, we could define the User type using our previous example with leaner code and at most 4
database requests, and possibly fewer if there are cache hits.

3.3. Dataloader 35

Graphene Documentation, Release 1.0

class User(graphene.ObjectType):
name = graphene.String()
best_friend = graphene.Field(lambda: User)
friends = graphene.List(lambda: User)

async def resolve_best_friend(root, info):
return await user_loader.load(root.best_friend_id)

async def resolve_friends(root, info):
return await user_loader.load_many(root.friend_ids)

3.4 File uploading

File uploading is not part of the official GraphQL spec yet and is not natively implemented in Graphene.

If your server needs to support file uploading then you can use the library: graphene-file-upload which enhances
Graphene to add file uploads and conforms to the unoffical GraphQL multipart request spec.

3.5 Subscriptions

To create a subscription, you can directly call the subscribe method on the schema. This method is async and must
be awaited.

import asyncio
from datetime import datetime
from graphene import ObjectType, String, Schema, Field

Every schema requires a query.
class Query(ObjectType):

hello = String()

def resolve_hello(root, info):
return "Hello, world!"

class Subscription(ObjectType):
time_of_day = String()

async def subscribe_time_of_day(root, info):
while True:

yield datetime.now().isoformat()
await asyncio.sleep(1)

schema = Schema(query=Query, subscription=Subscription)

async def main(schema):
subscription = 'subscription { timeOfDay }'
result = await schema.subscribe(subscription)
async for item in result:

print(item.data['timeOfDay'])

asyncio.run(main(schema))

The result is an async iterator which yields items in the same manner as a query.

36 Chapter 3. Execution

https://github.com/lmcgartland/graphene-file-upload
https://github.com/jaydenseric/graphql-multipart-request-spec

Graphene Documentation, Release 1.0

3.6 Query Validation

GraphQL uses query validators to check if Query AST is valid and can be executed. Every GraphQL server implements
standard query validators. For example, there is an validator that tests if queried field exists on queried type, that makes
query fail with “Cannot query field on type” error if it doesn’t.

To help with common use cases, graphene provides a few validation rules out of the box.

3.6.1 Depth limit Validator

The depth limit validator helps to prevent execution of malicious queries. It takes in the following arguments.

• max_depth is the maximum allowed depth for any operation in a GraphQL document.

• ignore Stops recursive depth checking based on a field name. Either a string or regexp to match the name, or
a function that returns a boolean

• callback Called each time validation runs. Receives an Object which is a map of the depths for each opera-
tion.

3.6.2 Usage

Here is how you would implement depth-limiting on your schema.

from graphql import validate, parse
from graphene import ObjectType, Schema, String
from graphene.validation import depth_limit_validator

class MyQuery(ObjectType):
name = String(required=True)

schema = Schema(query=MyQuery)

queries which have a depth more than 20
will not be executed.

validation_errors = validate(
schema=schema.graphql_schema,
document_ast=parse('THE QUERY'),
rules=(

depth_limit_validator(
max_depth=20

),
)

)

3.6.3 Disable Introspection

the disable introspection validation rule ensures that your schema cannot be introspected. This is a useful security
measure in production environments.

3.6. Query Validation 37

Graphene Documentation, Release 1.0

3.6.4 Usage

Here is how you would disable introspection for your schema.

from graphql import validate, parse
from graphene import ObjectType, Schema, String
from graphene.validation import DisableIntrospection

class MyQuery(ObjectType):
name = String(required=True)

schema = Schema(query=MyQuery)

introspection queries will not be executed.

validation_errors = validate(
schema=schema.graphql_schema,
document_ast=parse('THE QUERY'),
rules=(

DisableIntrospection,
)

)

3.6.5 Implementing custom validators

All custom query validators should extend the ValidationRule base class importable from the graphql.validation.rules
module. Query validators are visitor classes. They are instantiated at the time of query validation with one required
argument (context: ASTValidationContext). In order to perform validation, your validator class should define one or
more of enter_* and leave_* methods. For possible enter/leave items as well as details on function documentation,
please see contents of the visitor module. To make validation fail, you should call validator’s report_error method with
the instance of GraphQLError describing failure reason. Here is an example query validator that visits field definitions
in GraphQL query and fails query validation if any of those fields are blacklisted:

from graphql import GraphQLError
from graphql.language import FieldNode
from graphql.validation import ValidationRule

my_blacklist = (
"disallowed_field",

)

def is_blacklisted_field(field_name: str):
return field_name.lower() in my_blacklist

class BlackListRule(ValidationRule):
def enter_field(self, node: FieldNode, *_args):

field_name = node.name.value
if not is_blacklisted_field(field_name):

return

self.report_error(

38 Chapter 3. Execution

https://github.com/graphql-python/graphql-core/blob/v3.0.5/src/graphql/validation/rules/__init__.py#L37

Graphene Documentation, Release 1.0

GraphQLError(
f"Cannot query '{field_name}': field is blacklisted.", node,

)
)

3.6. Query Validation 39

Graphene Documentation, Release 1.0

40 Chapter 3. Execution

CHAPTER 4

Relay

Graphene has complete support for Relay and offers some utils to make integration from Python easy.

4.1 Nodes

A Node is an Interface provided by graphene.relay that contains a single field id (which is a ID!). Any object
that inherits from it has to implement a get_node method for retrieving a Node by an id.

4.1.1 Quick example

Example usage (taken from the Starwars Relay example):

class Ship(graphene.ObjectType):
'''A ship in the Star Wars saga'''
class Meta:

interfaces = (relay.Node,)

name = graphene.String(description='The name of the ship.')

@classmethod
def get_node(cls, info, id):

return get_ship(id)

The id returned by the Ship type when you query it will be a scalar which contains enough info for the server to
know its type and its id.

For example, the instance Ship(id=1) will return U2hpcDox as the id when you query it (which is the base64
encoding of Ship:1), and which could be useful later if we want to query a node by its id.

41

https://relay.dev/docs/guides/graphql-server-specification/
https://github.com/graphql-python/graphene/blob/master/examples/starwars_relay/schema.py

Graphene Documentation, Release 1.0

4.1.2 Custom Nodes

You can use the predefined relay.Node or you can subclass it, defining custom ways of how a node id is en-
coded (using the to_global_id method in the class) or how we can retrieve a Node given a encoded id (with the
get_node_from_global_id method).

Example of a custom node:

class CustomNode(Node):

class Meta:
name = 'Node'

@staticmethod
def to_global_id(type_, id):

return f"{type_}:{id}"

@staticmethod
def get_node_from_global_id(info, global_id, only_type=None):

type_, id = global_id.split(':')
if only_type:

We assure that the node type that we want to retrieve
is the same that was indicated in the field type
assert type_ == only_type._meta.name, 'Received not compatible node.'

if type_ == 'User':
return get_user(id)

elif type_ == 'Photo':
return get_photo(id)

The get_node_from_global_id method will be called when CustomNode.Field is resolved.

4.1.3 Accessing node types

If we want to retrieve node instances from a global_id (scalar that identifies an instance by it’s type name and id),
we can simply do Node.get_node_from_global_id(info, global_id).

In the case we want to restrict the instance retrieval to a specific type, we can do: Node.
get_node_from_global_id(info, global_id, only_type=Ship). This will raise an error if the
global_id doesn’t correspond to a Ship type.

4.1.4 Node Root field

As is required in the Relay specification, the server must implement a root field called node that returns a Node
Interface.

For this reason, graphene provides the field relay.Node.Field, which links to any type in the Schema which
implements Node. Example usage:

class Query(graphene.ObjectType):
Should be CustomNode.Field() if we want to use our custom Node
node = relay.Node.Field()

42 Chapter 4. Relay

https://facebook.github.io/relay/docs/graphql-relay-specification.html

Graphene Documentation, Release 1.0

4.2 Connection

A connection is a vitaminized version of a List that provides ways of slicing and paginating through it. The way you
create Connection types in graphene is using relay.Connection and relay.ConnectionField.

4.2.1 Quick example

If we want to create a custom Connection on a given node, we have to subclass the Connection class.

In the following example, extra will be an extra field in the connection, and other an extra field in the Connection
Edge.

class ShipConnection(Connection):
extra = String()

class Meta:
node = Ship

class Edge:
other = String()

The ShipConnection connection class, will have automatically a pageInfo field, and a edges field (which
is a list of ShipConnection.Edge). This Edge will have a node field linking to the specified node (in
ShipConnection.Meta) and the field other that we defined in the class.

4.2.2 Connection Field

You can create connection fields in any Connection, in case any ObjectType that implements Node will have a default
Connection.

class Faction(graphene.ObjectType):
name = graphene.String()
ships = relay.ConnectionField(ShipConnection)

def resolve_ships(root, info):
return []

4.3 Mutations

Most APIs don’t just allow you to read data, they also allow you to write.

In GraphQL, this is done using mutations. Just like queries, Relay puts some additional requirements on muta-
tions, but Graphene nicely manages that for you. All you need to do is make your mutation a subclass of relay.
ClientIDMutation.

class IntroduceShip(relay.ClientIDMutation):

class Input:
ship_name = graphene.String(required=True)
faction_id = graphene.String(required=True)

ship = graphene.Field(Ship)
faction = graphene.Field(Faction)

4.2. Connection 43

Graphene Documentation, Release 1.0

@classmethod
def mutate_and_get_payload(cls, root, info, **input):

ship_name = input.ship_name
faction_id = input.faction_id
ship = create_ship(ship_name, faction_id)
faction = get_faction(faction_id)
return IntroduceShip(ship=ship, faction=faction)

4.3.1 Accepting Files

Mutations can also accept files, that’s how it will work with different integrations:

class UploadFile(graphene.ClientIDMutation):
class Input:

pass
nothing needed for uploading file

your return fields
success = graphene.String()

@classmethod
def mutate_and_get_payload(cls, root, info, **input):

When using it in Django, context will be the request
files = info.context.FILES
Or, if used in Flask, context will be the flask global request
files = context.files

do something with files

return UploadFile(success=True)

4.4 Useful links

• Getting started with Relay

• Relay Global Identification Specification

• Relay Cursor Connection Specification

44 Chapter 4. Relay

https://relay.dev/docs/getting-started/step-by-step-guide/
https://relay.dev/graphql/objectidentification.htm
https://relay.dev/graphql/connections.htm

CHAPTER 5

Testing in Graphene

Automated testing is an extremely useful bug-killing tool for the modern developer. You can use a collection of tests
– a test suite – to solve, or avoid, a number of problems:

• When you’re writing new code, you can use tests to validate your code works as expected.

• When you’re refactoring or modifying old code, you can use tests to ensure your changes haven’t affected your
application’s behavior unexpectedly.

Testing a GraphQL application is a complex task, because a GraphQL application is made of several layers of logic –
schema definition, schema validation, permissions and field resolution.

With Graphene test-execution framework and assorted utilities, you can simulate GraphQL requests, execute muta-
tions, inspect your application’s output and generally verify your code is doing what it should be doing.

5.1 Testing tools

Graphene provides a small set of tools that come in handy when writing tests.

5.1.1 Test Client

The test client is a Python class that acts as a dummy GraphQL client, allowing you to test your views and interact
with your Graphene-powered application programmatically.

Some of the things you can do with the test client are:

• Simulate Queries and Mutations and observe the response.

• Test that a given query request is rendered by a given Django template, with a template context that contains
certain values.

45

Graphene Documentation, Release 1.0

5.1.2 Overview and a quick example

To use the test client, instantiate graphene.test.Client and retrieve GraphQL responses:

from graphene.test import Client

def test_hey():
client = Client(my_schema)
executed = client.execute('''{ hey }''')
assert executed == {

'data': {
'hey': 'hello!'

}
}

5.1.3 Execute parameters

You can also add extra keyword arguments to the execute method, such as context, root, variables, ...:

from graphene.test import Client

def test_hey():
client = Client(my_schema)
executed = client.execute('''{ hey }''', context={'user': 'Peter'})
assert executed == {

'data': {
'hey': 'hello Peter!'

}
}

5.1.4 Snapshot testing

As our APIs evolve, we need to know when our changes introduce any breaking changes that might break some of the
clients of our GraphQL app.

However, writing tests and replicating the same response we expect from our GraphQL application can be a tedious
and repetitive task, and sometimes it’s easier to skip this process.

Because of that, we recommend the usage of SnapshotTest.

SnapshotTest lets us write all these tests in a breeze, as it automatically creates the snapshots for us the first time
the test are executed.

Here is a simple example on how our tests will look if we use pytest:

def test_hey(snapshot):
client = Client(my_schema)
This will create a snapshot dir and a snapshot file
the first time the test is executed, with the response
of the execution.
snapshot.assert_match(client.execute('''{ hey }'''))

If we are using unittest:

from snapshottest import TestCase

46 Chapter 5. Testing in Graphene

https://github.com/syrusakbary/snapshottest/

Graphene Documentation, Release 1.0

class APITestCase(TestCase):
def test_api_me(self):

"""Testing the API for /me"""
client = Client(my_schema)
self.assertMatchSnapshot(client.execute('''{ hey }'''))

5.1. Testing tools 47

Graphene Documentation, Release 1.0

48 Chapter 5. Testing in Graphene

CHAPTER 6

API Reference

6.1 Schema

class graphene.types.schema.Schema(query=None, mutation=None, subscription=None,
types=None, directives=None, auto_camelcase=True)

Schema Definition. A Graphene Schema can execute operations (query, mutation, subscription) against the
defined types. For advanced purposes, the schema can be used to lookup type definitions and answer questions
about the types through introspection. :param query: Root query ObjectType. Describes entry point for fields to
read

data in your Schema.

Parameters

• mutation (Optional[Type[ObjectType]]) – Root mutation ObjectType. De-
scribes entry point for fields to create, update or delete data in your API.

• subscription (Optional[Type[ObjectType]]) – Root subscription Object-
Type. Describes entry point for fields to receive continuous updates.

• types (Optional[List[Type[ObjectType]]]) – List of any types to include in
schema that may not be introspected through root types.

• directives (List[GraphQLDirective], optional) – List of custom direc-
tives to include in the GraphQL schema. Defaults to only include directives defined by
GraphQL spec (@include and @skip) [GraphQLIncludeDirective, GraphQLSkipDirective].

• auto_camelcase (bool) – Fieldnames will be transformed in Schema’s TypeMap from
snake_case to camelCase (preferred by GraphQL standard). Default True.

execute(*args, **kwargs)
Execute a GraphQL query on the schema. Use the graphql_sync function from graphql-core to provide the
result for a query string. Most of the time this method will be called by one of the Graphene Integrations
via a web request. :param request_string: GraphQL request (query, mutation or subscription)

as string or parsed AST form from graphql-core.

49

https://docs.python.org/3/library/functions.html#bool

Graphene Documentation, Release 1.0

Parameters

• root_value (Any, optional) – Value to use as the parent value object when re-
solving root types.

• context_value (Any, optional) – Value to be made available to all resolvers via
info.context. Can be used to share authorization, dataloaders or other information needed
to resolve an operation.

• variable_values (dict, optional) – If variables are used in the request string,
they can be provided in dictionary form mapping the variable name to the variable value.

• operation_name (str, optional) – If multiple operations are provided in the
request_string, an operation name must be provided for the result to be provided.

• middleware (List[SupportsGraphQLMiddleware]) – Supply request level
middleware as defined in graphql-core.

• execution_context_class (ExecutionContext, optional) – The execu-
tion context class to use when resolving queries and mutations.

Returns ExecutionResult containing any data and errors for the operation.

execute_async(*args, **kwargs)
Execute a GraphQL query on the schema asynchronously. Same as execute, but uses graphql instead of
graphql_sync.

subscribe(query, *args, **kwargs)
Execute a GraphQL subscription on the schema asynchronously.

6.2 Object types

class graphene.ObjectType
Object Type Definition

Almost all of the GraphQL types you define will be object types. Object types have a name, but most importantly
describe their fields.

The name of the type defined by an _ObjectType_ defaults to the class name. The type description defaults to
the class docstring. This can be overridden by adding attributes to a Meta inner class.

The class attributes of an _ObjectType_ are mounted as instances of graphene.Field.

Methods starting with resolve_<field_name> are bound as resolvers of the matching Field name. If no
resolver is provided, the default resolver is used.

Ambiguous types with Interface and Union can be determined through is_type_of method and Meta.
possible_types attribute.

from graphene import ObjectType, String, Field

class Person(ObjectType):
class Meta:

description = 'A human'

implicitly mounted as Field
first_name = String()
explicitly mounted as Field
last_name = Field(String)

50 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Graphene Documentation, Release 1.0

def resolve_last_name(parent, info):
return last_name

ObjectType must be mounted using graphene.Field.

from graphene import ObjectType, Field

class Query(ObjectType):

person = Field(Person, description="My favorite person")

Meta class options (optional):

name (str): Name of the GraphQL type (must be unique in schema). Defaults to class name.

description (str): Description of the GraphQL type in the schema. Defaults to class docstring.

interfaces (Iterable[graphene.Interface]): GraphQL interfaces to extend with this object. all fields
from interface will be included in this object’s schema.

possible_types (Iterable[class]): Used to test parent value object via isinstance to see if this type can
be used to resolve an ambiguous type (interface, union).

default_resolver (any Callable resolver): Override the default resolver for this type. Defaults to
graphene default resolver which returns an attribute or dictionary key with the same name as the
field.

fields (Dict[str, graphene.Field]): Dictionary of field name to Field. Not recommended to use (prefer
class attributes).

An _ObjectType_ can be used as a simple value object by creating an instance of the class.

p = Person(first_name='Bob', last_name='Roberts')
assert p.first_name == 'Bob'

Parameters

• *args (List[Any]) – Positional values to use for Field values of value object

• (Dict[str (**kwargs) – Any]): Keyword arguments to use for Field values of value
object

class graphene.InputObjectType(*args, **kwargs)
Input Object Type Definition

An input object defines a structured collection of fields which may be supplied to a field argument.

Using graphene.NonNull will ensure that a input value must be provided by the query.

All class attributes of graphene.InputObjectType are implicitly mounted as InputField using the below
Meta class options.

from graphene import InputObjectType, String, InputField

class Person(InputObjectType):
implicitly mounted as Input Field
first_name = String(required=True)
explicitly mounted as Input Field
last_name = InputField(String, description="Surname")

6.2. Object types 51

Graphene Documentation, Release 1.0

The fields on an input object type can themselves refer to input object types, but you can’t mix input and output
types in your schema.

Meta class options (optional):

name (str): the name of the GraphQL type (must be unique in schema). Defaults to class name.

description (str): the description of the GraphQL type in the schema. Defaults to class docstring.

container (class): A class reference for a value object that allows for attribute initialization and ac-
cess. Default InputObjectTypeContainer.

fields (Dict[str, graphene.InputField]): Dictionary of field name to InputField. Not recommended to
use (prefer class attributes).

class graphene.Mutation→ None
Object Type Definition (mutation field)

Mutation is a convenience type that helps us build a Field which takes Arguments and returns a mutation Output
ObjectType.

import graphene

class CreatePerson(graphene.Mutation):
class Arguments:

name = graphene.String()

ok = graphene.Boolean()
person = graphene.Field(Person)

def mutate(parent, info, name):
person = Person(name=name)
ok = True
return CreatePerson(person=person, ok=ok)

class Mutation(graphene.ObjectType):
create_person = CreatePerson.Field()

Meta class options (optional):

output (graphene.ObjectType): Or Output inner class with attributes on Mutation class. Or
attributes from Mutation class. Fields which can be returned from this mutation field.

resolver (Callable resolver method): Or mutate method on Mutation class. Perform data change
and return output.

arguments (Dict[str, graphene.Argument]): Or Arguments inner class with attributes on
Mutation class. Arguments to use for the mutation Field.

name (str): Name of the GraphQL type (must be unique in schema). Defaults to class name.

description (str): Description of the GraphQL type in the schema. Defaults to class docstring.

interfaces (Iterable[graphene.Interface]): GraphQL interfaces to extend with the payload object.
All fields from interface will be included in this object’s schema.

fields (Dict[str, graphene.Field]): Dictionary of field name to Field. Not recommended to use (prefer
class attributes or Meta.output).

classmethod Field(name=None, description=None, deprecation_reason=None, required=False)
Mount instance of mutation Field.

52 Chapter 6. API Reference

Graphene Documentation, Release 1.0

6.3 Fields (Mounted Types)

class graphene.Field(type_, args=None, resolver=None, source=None, deprecation_reason=None,
name=None, description=None, required=False, _creation_counter=None, de-
fault_value=None, **extra_args)

Makes a field available on an ObjectType in the GraphQL schema. Any type can be mounted as a Field:

•Object Type

•Scalar Type

•Enum

•Interface

•Union

All class attributes of graphene.ObjectType are implicitly mounted as Field using the below arguments.

class Person(ObjectType):
first_name = graphene.String(required=True) # implicitly

→˓mounted as Field
last_name = graphene.Field(String, description='Surname') # explicitly

→˓mounted as Field

Parameters

• type (class for a graphene.UnmountedType) – Must be a class (not an in-
stance) of an unmounted graphene type (ex. scalar or object) which is used for the type of
this field in the GraphQL schema.

• args (optional, Dict[str, graphene.Argument]) – Arguments that can be
input to the field. Prefer to use **extra_args, unless you use an argument name that
clashes with one of the Field arguments presented here (see example).

• resolver (optional, Callable) – A function to get the value for a Field from the
parent value object. If not set, the default resolver method for the schema is used.

• source (optional, str) – attribute name to resolve for this field from the parent value
object. Alternative to resolver (cannot set both source and resolver).

• deprecation_reason (optional, str) – Setting this value indicates that the field
is depreciated and may provide instruction or reason on how for clients to proceed.

• required (optional, bool) – indicates this field as not null in the graphql schema.
Same behavior as graphene.NonNull. Default False.

• name (optional, str) – the name of the GraphQL field (must be unique in a type).
Defaults to attribute name.

• description (optional, str) – the description of the GraphQL field in the schema.

• default_value (optional, Any) – Default value to resolve if none set from
schema.

• **extra_args (optional, Dict[str, Union[graphene.Argument,
graphene.UnmountedType]) – any additional arguments to mount on the field.

class graphene.Argument(type_, default_value=Undefined, deprecation_reason=None, descrip-
tion=None, name=None, required=False, _creation_counter=None)

Makes an Argument available on a Field in the GraphQL schema.

6.3. Fields (Mounted Types) 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Graphene Documentation, Release 1.0

Arguments will be parsed and provided to resolver methods for fields as keyword arguments.

All arg and **extra_args for a graphene.Field are implicitly mounted as Argument using the below
parameters.

from graphene import String, Boolean, Argument

age = String(
Boolean implicitly mounted as Argument
dog_years=Boolean(description="convert to dog years"),
Boolean explicitly mounted as Argument
decades=Argument(Boolean, default_value=False),

)

Parameters

• type (class for a graphene.UnmountedType) – must be a class (not an in-
stance) of an unmounted graphene type (ex. scalar or object) which is used for the type of
this argument in the GraphQL schema.

• required (optional, bool) – indicates this argument as not null in the graphql
schema. Same behavior as graphene.NonNull. Default False.

• name (optional, str) – the name of the GraphQL argument. Defaults to parameter
name.

• description (optional, str) – the description of the GraphQL argument in the
schema.

• default_value (optional, Any) – The value to be provided if the user does not set
this argument in the operation.

• deprecation_reason (optional, str) – Setting this value indicates that the ar-
gument is depreciated and may provide instruction or reason on how for clients to proceed.
Cannot be set if the argument is required (see spec).

class graphene.InputField(type_, name=None, default_value=Undefined, deprecation_reason=None,
description=None, required=False, _creation_counter=None, **ex-
tra_args)

Makes a field available on an ObjectType in the GraphQL schema. Any type can be mounted as a Input Field
except Interface and Union:

•Object Type

•Scalar Type

•Enum

Input object types also can’t have arguments on their input fields, unlike regular graphene.Field.

All class attributes of graphene.InputObjectType are implicitly mounted as InputField using the below
arguments.

from graphene import InputObjectType, String, InputField

class Person(InputObjectType):
implicitly mounted as Input Field
first_name = String(required=True)
explicitly mounted as Input Field
last_name = InputField(String, description="Surname")

54 Chapter 6. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Graphene Documentation, Release 1.0

Parameters

• type (class for a graphene.UnmountedType) – Must be a class (not an in-
stance) of an unmounted graphene type (ex. scalar or object) which is used for the type of
this field in the GraphQL schema.

• name (optional, str) – Name of the GraphQL input field (must be unique in a type).
Defaults to attribute name.

• default_value (optional, Any) – Default value to use as input if none set in user
operation (query, mutation, etc.).

• deprecation_reason (optional, str) – Setting this value indicates that the field
is depreciated and may provide instruction or reason on how for clients to proceed.

• description (optional, str) – Description of the GraphQL field in the schema.

• required (optional, bool) – Indicates this input field as not null in the graphql
schema. Raises a validation error if argument not provided. Same behavior as
graphene.NonNull. Default False.

• **extra_args (optional, Dict) – Not used.

6.4 Fields (Unmounted Types)

class graphene.types.unmountedtype.UnmountedType(*args, **kwargs)
This class acts a proxy for a Graphene Type, so it can be mounted dynamically as Field, InputField or Argument.

Instead of writing:

from graphene import ObjectType, Field, String

class MyObjectType(ObjectType):
my_field = Field(String, description='Description here')

It lets you write:

from graphene import ObjectType, String

class MyObjectType(ObjectType):
my_field = String(description='Description here')

It is not used directly, but is inherited by other types and streamlines their use in different context:

•Object Type

•Scalar Type

•Enum

•Interface

•Union

An unmounted type will accept arguments based upon its context (ObjectType, Field or InputObjectType) and
pass it on to the appropriate MountedType (Field, Argument or InputField).

See each Mounted type reference for more information about valid parameters.

6.4. Fields (Unmounted Types) 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Graphene Documentation, Release 1.0

6.5 GraphQL Scalars

class graphene.Int
The Int scalar type represents non-fractional signed whole numeric values. Int can represent values between
-(2^53 - 1) and 2^53 - 1 since represented in JSON as double-precision floating point numbers specified by
[IEEE 754](http://en.wikipedia.org/wiki/IEEE_floating_point).

class graphene.Float
The Float scalar type represents signed double-precision fractional values as specified by [IEEE 754](http:
//en.wikipedia.org/wiki/IEEE_floating_point).

class graphene.String
The String scalar type represents textual data, represented as UTF-8 character sequences. The String type is
most often used by GraphQL to represent free-form human-readable text.

class graphene.Boolean
The Boolean scalar type represents true or false.

class graphene.ID
The ID scalar type represents a unique identifier, often used to refetch an object or as key for a cache. The ID
type appears in a JSON response as a String; however, it is not intended to be human-readable. When expected
as an input type, any string (such as “4”) or integer (such as 4) input value will be accepted as an ID.

6.6 Graphene Scalars

class graphene.Date
The Date scalar type represents a Date value as specified by [iso8601](https://en.wikipedia.org/wiki/ISO_8601).

class graphene.DateTime
The DateTime scalar type represents a DateTime value as specified by [iso8601](https://en.wikipedia.org/wiki/
ISO_8601).

class graphene.Time
The Time scalar type represents a Time value as specified by [iso8601](https://en.wikipedia.org/wiki/ISO_8601).

class graphene.Decimal
The Decimal scalar type represents a python Decimal.

class graphene.UUID
Leverages the internal Python implementation of UUID (uuid.UUID) to provide native UUID objects in fields,
resolvers and input.

class graphene.JSONString
Allows use of a JSON String for input / output from the GraphQL schema.

Use of this type is not recommended as you lose the benefits of having a defined, static schema (one of the key
benefits of GraphQL).

class graphene.Base64
The Base64 scalar type represents a base64-encoded String.

6.7 Enum

class graphene.Enum
Enum type definition

56 Chapter 6. API Reference

http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

Graphene Documentation, Release 1.0

Defines a static set of values that can be provided as a Field, Argument or InputField.

from graphene import Enum

class NameFormat(Enum):
FIRST_LAST = "first_last"
LAST_FIRST = "last_first"

Meta: enum (optional, Enum): Python enum to use as a base for GraphQL Enum.

name (optional, str): Name of the GraphQL type (must be unique in schema). Defaults to class
name.

description (optional, str): Description of the GraphQL type in the schema. Defaults to class
docstring.

deprecation_reason (optional, str): Setting this value indicates that the enum is depreciated and may
provide instruction or reason on how for clients to proceed.

6.8 Structures

class graphene.List(of_type, *args, **kwargs)
List Modifier

A list is a kind of type marker, a wrapping type which points to another type. Lists are often created within the
context of defining the fields of an object type.

List indicates that many values will be returned (or input) for this field.

from graphene import List, String

field_name = List(String, description="There will be many values")

class graphene.NonNull(*args, **kwargs)
Non-Null Modifier

A non-null is a kind of type marker, a wrapping type which points to another type. Non-null types enforce that
their values are never null and can ensure an error is raised if this ever occurs during a request. It is useful for
fields which you can make a strong guarantee on non-nullability, for example usually the id field of a database
row will never be null.

Note: the enforcement of non-nullability occurs within the executor.

NonNull can also be indicated on all Mounted types with the keyword argument required.

from graphene import NonNull, String

field_name = NonNull(String, description='This field will not be null')
another_field = String(required=True, description='This is equivalent to the above
→˓')

6.9 Type Extension

class graphene.Interface
Interface Type Definition

6.8. Structures 57

Graphene Documentation, Release 1.0

When a field can return one of a heterogeneous set of types, a Interface type is used to describe what types are
possible, what fields are in common across all types, as well as a function to determine which type is actually
used when the field is resolved.

from graphene import Interface, String

class HasAddress(Interface):
class Meta:

description = "Address fields"

address1 = String()
address2 = String()

If a field returns an Interface Type, the ambiguous type of the object can be determined using resolve_type
on Interface and an ObjectType with Meta.possible_types or is_type_of.

Meta:

name (str): Name of the GraphQL type (must be unique in schema). Defaults to class name.

description (str): Description of the GraphQL type in the schema. Defaults to class docstring.

fields (Dict[str, graphene.Field]): Dictionary of field name to Field. Not recommended to use (prefer
class attributes).

class graphene.Union
Union Type Definition

When a field can return one of a heterogeneous set of types, a Union type is used to describe what types are
possible as well as providing a function to determine which type is actually used when the field is resolved.

The schema in this example can take a search text and return any of the GraphQL object types indicated: Human,
Droid or Starship.

Ambiguous return types can be resolved on each ObjectType through Meta.possible_types attribute or
is_type_of method. Or by implementing resolve_type class method on the Union.

from graphene import Union, ObjectType, List

class SearchResult(Union):
class Meta:

types = (Human, Droid, Starship)

class Query(ObjectType):
search = List(SearchResult.Field(

search_text=String(description='Value to search for'))
)

Meta:

types (Iterable[graphene.ObjectType]): Required. Collection of types that may be returned by this
Union for the graphQL schema.

name (optional, str): the name of the GraphQL type (must be unique in schema). Defaults to class
name.

description (optional, str): the description of the GraphQL type in the schema. Defaults to class
docstring.

58 Chapter 6. API Reference

Graphene Documentation, Release 1.0

6.10 Execution Metadata

graphene.ResolveInfo
alias of GraphQLResolveInfo

class graphene.Context(**params)
Context can be used to make a convenient container for attributes to provide for execution for resolvers of a
GraphQL operation like a query.

from graphene import Context

context = Context(loaders=build_dataloaders(), request=my_web_request)
schema.execute('{ hello(name: "world") }', context=context)

def resolve_hello(parent, info, name):
info.context.request # value set in Context
info.context.loaders # value set in Context
...

Parameters **params (Dict[str, Any]) – values to make available on Context instance as
attributes.

6.10. Execution Metadata 59

https://docs.python.org/3/library/stdtypes.html#str

Graphene Documentation, Release 1.0

60 Chapter 6. API Reference

CHAPTER 7

Integrations

• Graphene-Django (source)

• Flask-Graphql (source)

• Graphene-SQLAlchemy (source)

• Graphene-GAE (source)

• Graphene-Mongo (source)

• Starlette (source)

• FastAPI (source)

61

http://docs.graphene-python.org/projects/django/en/latest/
https://github.com/graphql-python/graphene-django/
https://github.com/graphql-python/flask-graphql
http://docs.graphene-python.org/projects/sqlalchemy/en/latest/
https://github.com/graphql-python/graphene-sqlalchemy/
http://docs.graphene-python.org/projects/gae/en/latest/
https://github.com/graphql-python/graphene-gae/
http://graphene-mongo.readthedocs.io/en/latest/
https://github.com/graphql-python/graphene-mongo
https://www.starlette.io/graphql/
https://github.com/encode/starlette
https://fastapi.tiangolo.com/advanced/graphql/
https://github.com/tiangolo/fastapi

Graphene Documentation, Release 1.0

62 Chapter 7. Integrations

Index

A
Argument (class in graphene), 53

B
Base64 (class in graphene), 56
Boolean (class in graphene), 56

C
Context (class in graphene), 59

D
Date (class in graphene), 56
DateTime (class in graphene), 56
Decimal (class in graphene), 56

E
Enum (class in graphene), 56
execute() (graphene.types.schema.Schema method), 49
execute_async() (graphene.types.schema.Schema

method), 50

F
Field (class in graphene), 53
Field() (graphene.Mutation class method), 52
Float (class in graphene), 56

I
ID (class in graphene), 56
InputField (class in graphene), 54
InputObjectType (class in graphene), 51
Int (class in graphene), 56
Interface (class in graphene), 57

J
JSONString (class in graphene), 56

L
List (class in graphene), 57

M
Mutation (class in graphene), 52

N
NonNull (class in graphene), 57

O
ObjectType (class in graphene), 50

R
ResolveInfo (in module graphene), 59

S
Schema (class in graphene.types.schema), 49
String (class in graphene), 56
subscribe() (graphene.types.schema.Schema method), 50

T
Time (class in graphene), 56

U
Union (class in graphene), 58
UnmountedType (class in

graphene.types.unmountedtype), 55
UUID (class in graphene), 56

63

	Getting started
	Introduction
	An example in Graphene

	Types Reference
	Schema
	Scalars
	Lists and Non-Null
	ObjectType
	Enums
	Interfaces
	Unions
	Mutations

	Execution
	Executing a query
	Middleware
	Dataloader
	File uploading
	Subscriptions
	Query Validation

	Relay
	Nodes
	Connection
	Mutations
	Useful links

	Testing in Graphene
	Testing tools

	API Reference
	Schema
	Object types
	Fields (Mounted Types)
	Fields (Unmounted Types)
	GraphQL Scalars
	Graphene Scalars
	Enum
	Structures
	Type Extension
	Execution Metadata

	Integrations

