Graphene Documentation
Release 1.0

Syrus Akbary

Jul 25, 2017

Contents

Getting started

1.1 Whatis GraphQL? e e e e
1.2 Requirements o i i e e e e e e e e e e e e e e e
1.3 ProjectSetup o i e e e e e e e e e e e
1.4 Creatingabasic Schema L
1.5 QUEIYING o vt e e e e e e e e e e e e e e e
Types Reference

2.1 Enums ... e e e e e e e e
2.2 Scalars e
23 Listsand Non-Null0 . o e
24 Interfaces L e e e e e e e e
2.5 ADbStractTyPes . . . o o . e e e e e e e e
2.6 ODbJectTYPES . . o o v i e e e
277 Schema e e
2.8 MUutations L e e e e e e e e e e e e e e e
Execution

3.1 EXecuting a qUETY .« v v v v e i e
32 Middleware L. e e e e e
3.3 Dataloader e e e e e e e e e
Relay

4.1 Nodes o o e e e
42 COonnection v v vt i i e e e e e e e e e e e e e e e e e e e
4.3 MUtations o e e e e e e e e e e e e e e e e e e e
4.4 Useful linKS o o e e e e e e e e e e e e e

Testing in Graphene
5.1 Testing tools o L e e e e e e

Integrations

17
17
17
18

21
21
23
23
24

25
25

29

Graphene Documentation, Release 1.0

Contents:

Contents 1

Graphene Documentation, Release 1.0

2 Contents

CHAPTER 1

Getting started

What is GraphQL?

For an introduction to GraphQL and an overview of its concepts, please refer to the official introduction.

Let’s build a basic GraphQL schema from scratch.

Requirements

e Python (2.7, 3.2, 3.3, 3.4, 3.5, pypy)
* Graphene (1.0)

Project setup

’pip install "graphene>=1.0"

Creating a basic Schema

A GraphQL schema describes your data model, and provides a GraphQL server with an associated set of resolve
methods that know how to fetch data.

We are going to create a very simple schema, with a Query with only one field: hello and an input name. And
when we query it, it should return "Hello {name}".

import graphene

class Query (graphene.ObjectType) :

http://graphql.org/learn/

Graphene Documentation, Release 1.0

hello = graphene.String(name=graphene.Argument (graphene.String, default_value=
—"stranger"))

def resolve_hello(self, args, context, info):
return 'Hello ' + args|['name']

schema = graphene.Schema (query=Query)

Querying

Then we can start querying our schema:

result = schema.execute('{ hello }")
print result.data['hello'] # "Hello stranger"

Congrats! You got your first graphene schema working!

4 Chapter 1. Getting started

CHAPTER 2

Types Reference

Enums

A Enum is a special GraphQL type that represents a set of symbolic names (members) bound to unique, constant

values.

Definition

You can create an Enum using classes:

import graphene

class Episode (graphene.Enum) :
NEWHOPE = 4
EMPIRE = 5
JEDI = 6

But also using instances of Enum:

Episode = graphene.Enum('Episode', [('NEWHOPE', 4), ('EMPIRE', 5), ('JEDI', 6)1])

Value descriptions

It’s possible to add a description to a enum value, for that the the enum value needs to have the description

property on it.

class Episode (graphene.Enum) :
NEWHOPE = 4
EMPIRE = 5
JEDI = 6

Graphene Documentation, Release 1.0

@property
def description(self):
if self == Episode.NEWHOPE:

return 'New Hope Episode'’
return 'Other episode’

Usage with Python Enums

In case the Enums are already defined it’s possible to reuse them using the Enum. from_enum function.

graphene.Enum. from_enum(AlreadyExistingPyEnum)

Notes

graphene.Enum uses enum.Enum internally (or a backport if that’s not available) and can be used in a similar
way, with the exception of member getters.

In the Python Enum implementation you can access a member by initing the Enum.

from enum import Enum
class Color (Enum) :
RED = 1
GREEN = 2
BLUE = 3

assert Color(l) == Color.RED

However, in Graphene Enum you need to call get to have the same effect:

from graphene import Enum
class Color (Enum) :

RED = 1

GREEN = 2

BLUE = 3

assert Color.get (1) == Color.RED

Scalars

Graphene defines the following base Scalar Types:
* graphene.String
* graphene.Int
* graphene.Float
* graphene.Boolean
* graphene.ID
Graphene also provides custom scalars for Dates, Times, and JSON:

* graphene.types.datetime.DateTime

6 Chapter 2. Types Reference

https://docs.python.org/3/library/enum.html

Graphene Documentation, Release 1.0

* graphene.types.datetime.Time

* graphene.types. json.JSONString

Custom scalars

You can create custom scalars for your schema. The following is an example for creating a DateTime scalar:

import datetime
from graphene.types import Scalar
from graphqgl.language import ast

class DateTime (Scalar) :
""'"DateTime Scalar Description'''

@staticmethod
def serialize(dt):
return dt.isoformat ()

@staticmethod
def parse_literal (node) :
if isinstance(node, ast.StringValue):
return datetime.datetime.strptime (
node.value, "%Y-%m-2dT%H:3$M:%S. ")

@staticmethod
def parse_value (value) :

return datetime.datetime.strptime (value, "SY-%m—2dTSH:SM:%S.

Mounting Scalars

Scalars mounted in a Ob jectType, Interface or Mutation actas Fields.

class Person (graphene.ObjectType) :
name = graphene.String()

Is equivalent to:
class Person (graphene.ObjectType) :
name = graphene.Field(graphene.String)

Note: when using the Field constructor directly, pass the type and not an instance.

Types mounted in a Field act as Arguments.

graphene.Field(graphene.String, to=graphene.String())

Is equivalent to:

graphene.Field(graphene.String, to=graphene.Argument (graphene.String))

Lists and Non-Null

Object types, scalars, and enums are the only kinds of types you can define in Graphene. But when you use the types
in other parts of the schema, or in your query variable declarations, you can apply additional type modifiers that affect

validation of those values.

2.3. Lists and Non-Null

Graphene Documentation, Release 1.0

NonNull

import graphene

class Character (graphene.ObjectType) :
name = graphene.NonNull (graphene.String)

Here, we’re using a St ring type and marking it as Non-Null by wrapping it using the NonNul1 class. This means
that our server always expects to return a non-null value for this field, and if it ends up getting a null value that will
actually trigger a GraphQL execution error, letting the client know that something has gone wrong.

The previous NonNull code snippet is also equivalent to:

import graphene

class Character (graphene.ObjectType) :
name = graphene.String(required=True)

List

import graphene

class Character (graphene.ObjectType) :
appears_in = graphene.List (graphene.String)

Lists work in a similar way: We can use a type modifier to mark a type as a List, which indicates that this field will
return a list of that type. It works the same for arguments, where the validation step will expect a list for that value.

Interfaces

An Interface contains the essential fields that will be implemented by multiple ObjectTypes.
The basics:
 Each Interface is a Python class that inherits from graphene.Interface.

* Each attribute of the Interface represents a GraphQL field.

Quick example

This example model defines a Character interface with a name. Human and Droid are two implementations of
that interface.

import graphene

class Character (graphene.Interface):
name = graphene.String()

Human is a Character implementation
class Human (graphene.ObjectType) :
class Meta:
interfaces = (Character,)

8 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

born_in = graphene.String()

Droid is a Character implementation
class Droid(graphene.ObjectType) :
class Meta:
interfaces = (Character,)

function = graphene.String()

name is a field on the Character interface that will also exist on both the Human and Droid ObjectTypes (as
those implement the Character interface). Each ObjectType may define additional fields.

The above types have the following representation in a schema:

interface Character {
name: String

type Droid implements Character {
name: String
function: String

type Human implements Character {
name: String
bornIn: String

AbstractTypes

An AbstractType contains fields that can be shared among graphene .ObJjectType, graphene.Interface,
graphene.InputObjectType or other graphene.AbstractType.

The basics:
» Each AbstractType is a Python class that inherits from graphene . AbstractType.

* Each attribute of the AbstractType represents a field (a graphene.Field or graphene.InputField
depending on where it is mounted)

Quick example

In this example UserFields is an Abstract Type with a name. User and UserInput are two types that have their
own fields plus the ones defined in UserFields.

import graphene

class UserFields (graphene.AbstractType) :
name = graphene.String/()

class User (graphene.ObjectType, UserFields):
pass

class UserInput (graphene.InputObjectType, UserFields):
pass

2.5. AbstractTypes 9

Graphene Documentation, Release 1.0

type User {
name: String

}

inputtype UserInput {
name: String

}

ObjectTypes

An ObjectType is the single, definitive source of information about your data. It contains the essential fields and
behaviors of the data you’re querying.

The basics:
» Each ObjectType is a Python class that inherits from graphene.ObjectType.

» Each attribute of the ObjectType represents a Field.

Quick example

This example model defines a Person, with a first and a last name:

import graphene

class Person (graphene.ObjectType) :
first_name = graphene.String/()
last_name = graphene.String()
full _name = graphene.String()

def resolve_full_name(self, args, context, info):
return ' ' format (self.first_name, self.last_name)

first_name and last_name are fields of the ObjectType. Each field is specified as a class attribute, and each attribute
maps to a Field.

The above Person ObjectType has the following schema representation:

type Person {
firstName: String
lastName: String
fullName: String

Resolvers

A resolver is a method that resolves certain fields within a Ob ject Type. If not specififed otherwise, the resolver of
a field is the resolve_{field_name} method on the ObjectType.

By default resolvers take the arguments args, context and info.

NOTE: The resolvers on a ObjectType are always treated as staticmethod’'s, so the first
argument to the resolver method " “self (or root) need not be an actual instance of the
ObjectType.

10 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

Quick example

This example model defines a Query type, which has a reverse field that reverses the given word argument using the
resolve_reverse method in the class.

import graphene

class Query (graphene.ObjectType) :
reverse = graphene.String(word=graphene.String())

def resolve_reverse(self, args, context, info):
word = args.get ('word")
return word[::-1]

Resolvers outside the class

A field can use a custom resolver from outside the class:

import graphene

def reverse(root, args, context, info):
word = args.get ('word")
return word[::—-1]

class Query (graphene.ObjectType) :
reverse = graphene.String(word=graphene.String(), resolver=reverse)

Instances as data containers

Graphene Ob ject Types can act as containers too. So with the previous example you could do:

peter = Person(first_name='Peter', last_name='Griffin'")

peter.first_name # prints "Peter"
peter.last_name # prints "Griffin"

Schema

A Schema is created by supplying the root types of each type of operation, query and mutation (optional). A schema
definition is then supplied to the validator and executor.

my_schema = Schema (
query=MyRootQuery,
mutation=MyRootMutation,

Types

There are some cases where the schema cannot access all of the types that we plan to have. For example, when a field
returns an Interface, the schema doesn’t know about any of the implementations.

2.7. Schema 11

Graphene Documentation, Release 1.0

In this case, we need to use the t ypes argument when creating the Schema.

my_schema = Schema (
query=MyRootQuery,
types=[SomeExtraObjectType,]

Querying

To query a schema, call the execute method on it.

my_schema.execute ('{ lastName }")

Auto CamelCase field names

By default all field and argument names (that are not explicitly set with the name arg) will be converted from
snake_case to camelCase (as the API is usually being consumed by a js/mobile client)

For example with the ObjectType

class Person (graphene.ObjectType) :
last_name = graphene.String/()
other_name = graphene.String(name='_other Name')

the 1ast_name field name is converted to 1astName.

In case you don’t want to apply this transformation, provide a name argument to the field constructor. other_name
converts to _other_Name (without further transformations).

Your query should look like

{
lastName
_other_Name

To disable this behavior, set the auto_camelcase to False upon schema instantiation.

my_schema = Schema (
query=MyRootQuery,
auto_camelcase=False,

Mutations

A Mutation is a special ObjectType that also defines an Input.

Quick example

This example defines a Mutation:

12 Chapter 2. Types Reference

Graphene Documentation, Release 1.0

import graphene

class CreatePerson (graphene.Mutation):
class Input:
name = graphene.String()

ok = graphene.Boolean ()
person = graphene.Field(lambda: Person)

@staticmethod
def mutate(root, args, context, info):
person = Person(name=args.get ('name'))

ok = True
return CreatePerson (person=person, ok=ok)

person and ok are the output fields of the Mutation when is resolved.

Input attributes are the arguments that the Mutation CreatePerson needs for resolving, in this case name will be
the only argument for the mutation.

mutate is the function that will be applied once the mutation is called.

So, we can finish our schema like this:

... the Mutation Class

class Person (graphene.ObjectType) :
name = graphene.String/()
age = graphene.Int ()

class MyMutations (graphene.ObjectType) :
create_person = CreatePerson.Field()

We must define a query for our schema
class Query (graphene.ObjectType) :

person = graphene.Field(Person)

schema = graphene.Schema (query=Query, mutation=MyMutations)

Executing the Mutation

Then, if we query (schema.execute (query_str)) the following:

mutation myFirstMutation {
createPerson (name: "Peter") {
person {
name

ok

‘We should receive:

"createPerson": {
"person" : {

2.8. Mutations 13

Graphene Documentation, Release 1.0

name: "Peter"

br
"ok": true

InputFields and InputObjectTypes

InputFields are used in mutations to allow nested input data for mutations

To use an InputField you define an InputObjectType that specifies the structure of your input data

import graphene

class PersonInput (graphene.InputObjectType) :
name = graphene.String/()
age = graphene.Int ()

class CreatePerson (graphene.Mutation) :
class Input:
person_data = graphene.Argument (PersonInput)

person = graphene.Field(lambda: Person)
@staticmethod
def mutate (root, args, context, info):

p_data = args.get ('person_data')

name = p_data.get ('name')
age = p_data.get('age')

person = Person (name=name, age=age)
return CreatePerson (person=person)

Note that name and age are part of person_data now

Using the above mutation your new query would look like this:

mutation myFirstMutation {
createPerson (personData: {name:"Peter", age: 24})
person {
name,
age

InputObjectTypes can also be fields of InputObjectTypes allowing you to have as complex of input data as you need

import graphene

class LatLngInput (graphene.InputObjectType) :
lat = graphene.Float ()
lng = graphene.Float ()

#A location has a latlng associated to it
class LocationInput (graphene.InputObjectType) :

14

Chapter 2. Types Reference

Graphene Documentation, Release 1.0

name = graphene.String()
latlng = graphene.InputField(LatLngInput)

2.8. Mutations 15

Graphene Documentation, Release 1.0

16 Chapter 2. Types Reference

CHAPTER 3

Execution

Executing a query

For executing a query a schema, you can directly call the execute method on it.

schema = graphene.Schema(...)
result = schema.execute('{ name }")

result represents the result of execution. result .data is the result of executing the query, result.errors

is None if no errors occurred, and is a non-empty list if an error occurred.

Context

You can pass context to a query via context_value.

class Query (graphene.ObjectType) :
name = graphene.String()

def resolve_name (self, args, context, info):
return context.get ('name')

schema = graphene.Schema (Query)

result = schema.execute('{ name }', context_value={'name':

'Syrus'})

Middleware

You can use middleware to affect the evaluation of fields in your schema.

A middleware is any object that responds to resolve (xargs, next_middleware).

Inside that method, it should either:

17

Graphene Documentation, Release 1.0

¢ Send resolve to the next middleware to continue the evaluation; or

* Return a value to end the evaluation early.

Resolve arguments

Middlewares resolve is invoked with several arguments:
* next represents the execution chain. Call next to continue evalution.
* root is the root value object passed throughout the query.
* args is the hash of arguments passed to the field.
e context is the context object passed throughout the query.

e info is the resolver info.

Example

This middleware only continues evaluation if the field name isnot 'user’

class AuthorizationMiddleware (object) :
def resolve(self, next, root, args, context, info):
if info.field_name == 'user':
return None
return next (root, args, context, info)

And then execute it with:

result = schema.execute ('THE QUERY', middleware=[AuthorizationMiddleware()])

Dataloader

DatalLoader is a generic utility to be used as part of your application’s data fetching layer to provide a simplified and
consistent API over various remote data sources such as databases or web services via batching and caching.

Batching

Batching is not an advanced feature, it’s DatalLoader’s primary feature. Create loaders by providing a batch loading
function.

from promise import Promise
from promise.dataloader import Dataloader

class UserLoader (Dataloader) :
def batch_load_fn(self, keys):
Here we return a promise that will result on the
corresponding user for each key in keys
return Promise.resolve ([get_user (id=key) for key in keys])

18 Chapter 3. Execution

Graphene Documentation, Release 1.0

A batch loading function accepts an list of keys, and returns a Promi se which resolves to an list of values.

Then load individual values from the loader. DataLoader will coalesce all individual loads which occur within a
single frame of execution (executed once the wrapping promise is resolved) and then call your batch function with all
requested keys.

user_loader = UserLoader ()

user_loader.load(l) .then (lambda user: user_loader.load(user.best_friend_id))

user_loader.load(2) .then(lambda user: user_loader.load(user.best_friend_id))

A naive application may have issued four round-trips to a backend for the required information, but with
DataLoader this application will make at most rwo.

DataLoader allows you to decouple unrelated parts of your application without sacrificing the performance of
batch data-loading. While the loader presents an API that loads individual values, all concurrent requests will be
coalesced and presented to your batch loading function. This allows your application to safely distribute data fetching
requirements throughout your application and maintain minimal outgoing data requests.

Using with Graphene

DatalLoader pairs nicely well with Graphene/GraphQL. GraphQL fields are designed to be stand-alone functions.
Without a caching or batching mechanism, it’s easy for a naive GraphQL server to issue new database requests each
time a field is resolved.

Consider the following GraphQL request:

{
me {

name

bestFriend {
name

}

friends (first: 5) {
name
bestFriend {

name

Naively, if me, bestFriend and friends each need to request the backend, there could be at most 13 database
requests!

When using DatalLoader, we could define the User type using our previous example with leaner code and at most 4
database requests, and possibly fewer if there are cache hits.

class User (graphene.ObjectType) :
name = graphene.String()
best_friend = graphene.Field(lambda: User)
friends = graphene.List (lambda: User)

def resolve_best_friend(self, args, context, info):
return user_loader.load(self.best_friend_id)

3.3. Dataloader 19

Graphene Documentation, Release 1.0

def resolve_friends(self, args, context, info):
return user_loader.load_many(self.friend_ids)

20

Chapter 3. Execution

CHAPTER 4

Relay

Graphene has complete support for Relay and offers some utils to make integration from Python easy.

Nodes

A Node is an Interface provided by graphene . relay that contains a single field id (whichis a ID!). Any object
that inherits from it has to implement a get_node method for retrieving a Node by an id.

Quick example

Example usage (taken from the Starwars Relay example):

class Ship(graphene.ObjectType) :
"'"'A ship in the Star Wars saga'''
class Meta:

interfaces = (relay.Node,)
name = graphene.String(description='The name of the ship.')
@classmethod

def get_node(cls, 1id, context, info):
return get_ship(id)

The id returned by the Ship type when you query it will be a scalar which contains enough info for the server to
know its type and its id.

For example, the instance Ship (id=1) will return U2hpcDox as the id when you query it (which is the base64
encoding of Ship: 1), and which could be useful later if we want to query a node by its id.

21

https://facebook.github.io/relay/docs/graphql-relay-specification.html
https://github.com/graphql-python/graphene/blob/master/examples/starwars_relay/schema.py

Graphene Documentation, Release 1.0

Custom Nodes

You can use the predefined relay.Node or you can subclass it, defining custom ways of how a node id is en-
coded (using the to_global_id method in the class) or how we can retrieve a Node given a encoded id (with the
get_node_from_global_id method).

Example of a custom node:

class CustomNode (Node) :

class Meta:

name = 'Node'
@staticmethod
def to_global_id(type, id):

return ' : '.format (type, id)
@staticmethod

def get_node_from_global_id(global_id, context, info, only_type=None) :
type, id = global_id.split(':")
if only_node:
We assure that the node type that we want to retrieve
1s the same that was indicated in the field type
assert type == only_node._meta.name, 'Received not compatible node.'

if type == 'User':
return get_user (id)

elif type == 'Photo':
return get_photo (id)

The get_node_from_global_id method will be called when CustomNode .Field is resolved.

Accessing node types
If we want to retrieve node instances from a global_id (scalar that identifies an instance by it’s type name and id),
we can simply do Node .get_node_from_global_id(global_id, context, info).

In the case we want to restrict the instance retrieval to a specific type, we can do: Node.
get_node_from_global_id(global_id, context, info, only_type=Ship). This will raise an
error if the global_id doesn’t correspond to a Ship type.

Node Root field

As is required in the Relay specification, the server must implement a root field called node that returns a Node
Interface.

For this reason, graphene provides the field relay.Node.Field, which links to any type in the Schema which
implements Node. Example usage:

class Query (graphene.ObjectType) :
Should be CustomNode.Field() if we want to use our custom Node
node = relay.Node.Field()

22 Chapter 4. Relay

https://facebook.github.io/relay/docs/graphql-relay-specification.html

Graphene Documentation, Release 1.0

Connection

A connection is a vitaminized version of a List that provides ways of slicing and paginating through it. The way you
create Connection types in graphene is using relay.Connectionand relay.ConnectionField.

Quick example

If we want to create a custom Connection on a given node, we have to subclass the Connection class.

In the following example, ext ra will be an extra field in the connection, and ot her an extra field in the Connection
Edge.

class ShipConnection (Connection):
extra = String()

class Meta:
node = Ship

class Edge:
other = String()

The ShipConnection connection class, will have automatically a pageInfo field, and a edges field (which
is a list of ShipConnection.Edge). This Edge will have a node field linking to the specified node (in
ShipConnection.Meta) and the field other that we defined in the class.

Connection Field

You can create connection fields in any Connection, in case any ObjectType that implements Node will have a default
Connection.

class Faction (graphene.ObjectType) :
name = graphene.String()
ships = relay.ConnectionField(ShipConnection)

def resolve_ships(self, args, context, info):
return []

Mutations

Most APIs don’t just allow you to read data, they also allow you to write.

In GraphQL, this is done using mutations. Just like queries, Relay puts some additional requirements on muta-
tions, but Graphene nicely manages that for you. All you need to do is make your mutation a subclass of relay.
ClientIDMutation

class IntroduceShip(relay.ClientIDMutation):

class Input:
ship_name = graphene.String(required=True)
faction_id = graphene.String(required=True)

ship = graphene.Field(Ship)
faction = graphene.Field (Faction)

4.2. Connection 23

Graphene Documentation, Release 1.0

@classmethod
def mutate_and_get_payload(cls, input, context, info):
ship_name = input.get ('ship_name')

faction_id = input.get ('faction_id")

ship = create_ship(ship_name, faction_id)
faction = get_faction(faction_id)

return IntroduceShip (ship=ship, faction=faction)

Accepting Files

Mutations can also accept files, that’s how it will work with different integrations:

class UploadFile (graphene.ClientIDMutation) :
class Input:
pass

nothing needed for uploading file

your return fields
success = graphene.String/()

@classmethod
def mutate_and_get_payload(cls, input, context, info):
When using it in Django, context will be the request

files = context.FILES

files = context.files

do something with files

return UploadFile (success=True)

Or, 1if used in Flask, context will be the flask global request

Useful links

* Getting started with Relay

Relay Global Identification Specification

* Relay Cursor Connection Specification

Relay input Object Mutation

24

Chapter 4. Relay

https://facebook.github.io/relay/docs/graphql-relay-specification.html
https://facebook.github.io/relay/graphql/objectidentification.htm
https://facebook.github.io/relay/graphql/connections.htm
https://facebook.github.io/relay/graphql/mutations.htm

CHAPTER B

Testing in Graphene

Automated testing is an extremely useful bug-killing tool for the modern developer. You can use a collection of tests
— a test suite — to solve, or avoid, a number of problems:

* When you’re writing new code, you can use tests to validate your code works as expected.

* When you’re refactoring or modifying old code, you can use tests to ensure your changes haven’t affected your
application’s behavior unexpectedly.

Testing a GraphQL application is a complex task, because a GraphQL application is made of several layers of logic —
schema definition, schema validation, permissions and field resolution.

With Graphene test-execution framework and assorted utilities, you can simulate GraphQL requests, execute muta-
tions, inspect your application’s output and generally verify your code is doing what it should be doing.

Testing tools

Graphene provides a small set of tools that come in handy when writing tests.

Test Client
The test client is a Python class that acts as a dummy GraphQL client, allowing you to test your views and interact
with your Graphene-powered application programmatically.
Some of the things you can do with the test client are:
 Simulate Queries and Mutations and observe the response.

* Test that a given query request is rendered by a given Django template, with a template context that contains
certain values.

25

Graphene Documentation, Release 1.0

Overview and a quick example

To use the test client, instantiate graphene.test .Client and retrieve GraphQL responses:

from graphene.test import Client

def test_hey():
client = Client (my_schema)
executed = client.execute('''{ hey }''")
assert executed == {
'data': {
'hey': 'hello!'

Execute parameters

You can also add extra keyword arguments to the execute method, such as context_value, root_value,
variable_values,...:

from graphene.test import Client

def test_hey():
client = Client (my_schema)
executed = client.execute('''{ hey }'''", context_value={'user': 'Peter'})
assert executed == {
'data': {
'hey': 'hello Peter!'’

Snapshot testing
As our APIs evolve, we need to know when our changes introduce any breaking changes that might break some of the
clients of our GraphQL app.

However, writing tests and replicate the same response we expect from our GraphQL application can be tedious and
repetitive task, and sometimes it’s easier to skip this process.

Because of that, we recommend the usage of SnapshotTest.

SnapshotTest let us write all this tests in a breeze, as creates automatically the snapshots for us the first time the
test is executed.

Here is a simple example on how our tests will look if we use pytest:

def test_hey (snapshot) :
client = Client (my_schema)
This will create a snapshot dir and a snapshot file
the first time the test is executed, with the response
of the execution.
snapshot.assert_match(client.execute('''{ hey }''"))

If we are using unittest:

26 Chapter 5. Testing in Graphene

https://github.com/syrusakbary/snapshottest/

Graphene Documentation, Release 1.0

from snapshottest import TestCase

class APITestCase (TestCase) :
def test_api_me(self):
"""Testing the API for /me"""
client = Client (my_schema)
self.assertMatchSnapshot (client.execute('"''{ hey }'""))

5.1. Testing tools 27

Graphene Documentation, Release 1.0

28 Chapter 5. Testing in Graphene

CHAPTER O

Integrations

* Graphene-Django (source)
¢ Graphene-SQLAIchemy (source)
* Graphene-GAE (source)

29

http://docs.graphene-python.org/projects/django/en/latest/
https://github.com/graphql-python/graphene-django/
http://docs.graphene-python.org/projects/sqlalchemy/en/latest/
https://github.com/graphql-python/graphene-sqlalchemy/
http://docs.graphene-python.org/projects/gae/en/latest/
https://github.com/graphql-python/graphene-gae/

	Getting started
	What is GraphQL?
	Requirements
	Project setup
	Creating a basic Schema
	Querying

	Types Reference
	Enums
	Scalars
	Lists and Non-Null
	Interfaces
	AbstractTypes
	ObjectTypes
	Schema
	Mutations

	Execution
	Executing a query
	Middleware
	Dataloader

	Relay
	Nodes
	Connection
	Mutations
	Useful links

	Testing in Graphene
	Testing tools

	Integrations

