

Graphene

Contents:

	Getting started
	Introduction

	An example in Graphene

	Types Reference
	Schema

	Scalars

	Lists and Non-Null

	ObjectType

	Enums

	Interfaces

	Unions

	Mutations

	AbstractTypes

	Execution
	Executing a query

	Middleware

	Dataloader

	Relay
	Nodes

	Connection

	Mutations

	Useful links

	Testing in Graphene
	Testing tools

	API Reference
	Schema

	Object types

	Fields (Mounted Types)

	Fields (Unmounted Types)

	GraphQL Scalars

	Graphene Scalars

	Enum

	Structures

	Type Extension

	Execution Metadata

Integrations

	Graphene-Django [http://docs.graphene-python.org/projects/django/en/latest/] (source [https://github.com/graphql-python/graphene-django/])

	Flask-Graphql (source [https://github.com/graphql-python/flask-graphql])

	Graphene-SQLAlchemy [http://docs.graphene-python.org/projects/sqlalchemy/en/latest/] (source [https://github.com/graphql-python/graphene-sqlalchemy/])

	Graphene-GAE [http://docs.graphene-python.org/projects/gae/en/latest/] (source [https://github.com/graphql-python/graphene-gae/])

	Graphene-Mongo [http://graphene-mongo.readthedocs.io/en/latest/] (source [https://github.com/graphql-python/graphene-mongo])

	Starlette [https://www.starlette.io/graphql/] (source [https://github.com/encode/starlette])

	FastAPI [https://fastapi.tiangolo.com/tutorial/graphql/] (source [https://github.com/tiangolo/fastapi])

Getting started

Introduction

What is GraphQL?

GraphQL is a query language for your API.

It provides a standard way to:

	describe data provided by a server in a statically typed Schema

	request data in a Query which exactly describes your data requirements and

	receive data in a Response containing only the data you requested.

For an introduction to GraphQL and an overview of its concepts, please refer to the official GraphQL documentation [http://graphql.org/learn/].

What is Graphene?

Graphene is a library that provides tools to implement a GraphQL API in Python using a code-first approach.

Compare Graphene’s code-first approach to building a GraphQL API with schema-first approaches like Apollo Server [https://www.apollographql.com/docs/apollo-server/] (JavaScript) or Ariadne [https://ariadne.readthedocs.io] (Python). Instead of writing GraphQL Schema Definition Langauge (SDL), we write Python code to describe the data provided by your server.

Graphene is fully featured with integrations for the most popular web frameworks and ORMs. Graphene produces schemas tha are fully compliant with the GraphQL spec and provides tools and patterns for building a Relay-Compliant API as well.

An example in Graphene

Let’s build a basic GraphQL schema to say “hello” and “goodbye” in Graphene.

When we send a Query requesting only one Field, hello, and specify a value for the name Argument...

{
 hello(name: "friend")
}

...we would expect the following Response containing only the data requested (the goodbye field is not resolved).

{
 "data": {
 "hello": "Hello friend!"
 }
}

Requirements

	Python (2.7, 3.4, 3.5, 3.6, pypy)

	Graphene (2.0)

Project setup

pip install "graphene>=2.0"

Creating a basic Schema

In Graphene, we can define a simple schema using the following code:

from graphene import ObjectType, String, Schema

class Query(ObjectType):
 # this defines a Field `hello` in our Schema with a single Argument `name`
 hello = String(name=String(default_value="stranger"))
 goodbye = String()

 # our Resolver method takes the GraphQL context (root, info) as well as
 # Argument (name) for the Field and returns data for the query Response
 def resolve_hello(root, info, name):
 return f'Hello {name}!'

 def resolve_goodbye(root, info):
 return 'See ya!'

schema = Schema(query=Query)

A GraphQL Schema describes each Field in the data model provided by the server using scalar types like String, Int and Enum and compound types like List and Object. For more details refer to the Graphene Types Reference.

Our schema can also define any number of Arguments for our Fields. This is a powerful way for a Query to describe the exact data requirements for each Field.

For each Field in our Schema, we write a Resolver method to fetch data requested by a client’s Query using the current context and Arguments. For more details, refer to this section on Resolvers.

Schema Definition Language (SDL)

In the GraphQL Schema Definition Language [https://graphql.org/learn/schema/], we could describe the fields defined by our example code as show below.

type Query {
 hello(name: String = "stranger"): String
 goodbye: String
}

Further examples in this documentation will use SDL to describe schema created by ObjectTypes and other fields.

Querying

Then we can start querying our Schema by passing a GraphQL query string to execute:

we can query for our field (with the default argument)
query_string = '{ hello }'
result = schema.execute(query_string)
print(result.data['hello'])
"Hello stranger"

or passing the argument in the query
query_with_argument = '{ hello(name: "GraphQL") }'
result = schema.execute(query_with_argument)
print(result.data['hello'])
"Hello GraphQL!"

Next steps

Congrats! You got your first Graphene schema working!

Normally, we don’t need to directly execute a query string against our schema as Graphene provides many useful Integrations with popular web frameworks like Flask and Django. Check out Integrations for more information on how to get started serving your GraphQL API.

Types Reference

	Schema

	Scalars

	Lists and Non-Null

	ObjectType

	Enums

	Interfaces

	Unions

	Mutations

	AbstractTypes

Schema

A GraphQL Schema defines the types and relationship between Fields in your API.

A Schema is created by supplying the root ObjectType of each operation, query (mandatory), mutation and subscription.

Schema will collect all type definitions related to the root operations and then supplied to the validator and executor.

my_schema = Schema(
 query=MyRootQuery,
 mutation=MyRootMutation,
 subscription=MyRootSubscription
)

A Root Query is just a special ObjectType that defines the fields that are the entrypoint for your API. Root Mutation and Root Subscription are similar to Root Query, but for different operation types:

	Query fetches data

	Mutation to changes data and retrieve the changes

	Subscription to sends changes to clients in real time

Review the GraphQL documentation on Schema [https://graphql.org/learn/schema/] for a brief overview of fields, schema and operations.

Querying

To query a schema, call the execute method on it. See Executing a query for more details.

query_string = 'query whoIsMyBestFriend { myBestFriend { lastName } }'
my_schema.execute(query_string)

Types

There are some cases where the schema cannot access all of the types that we plan to have.
For example, when a field returns an Interface, the schema doesn’t know about any of the
implementations.

In this case, we need to use the types argument when creating the Schema.

my_schema = Schema(
 query=MyRootQuery,
 types=[SomeExtraObjectType,]
)

Auto CamelCase field names

By default all field and argument names (that are not
explicitly set with the name arg) will be converted from
snake_case to camelCase (as the API is usually being consumed by a js/mobile client)

For example with the ObjectType

class Person(graphene.ObjectType):
 last_name = graphene.String()
 other_name = graphene.String(name='_other_Name')

the last_name field name is converted to lastName.

In case you don’t want to apply this transformation, provide a name argument to the field constructor.
other_name converts to _other_Name (without further transformations).

Your query should look like

{
 lastName
 _other_Name
}

To disable this behavior, set the auto_camelcase to False upon schema instantiation.

my_schema = Schema(
 query=MyRootQuery,
 auto_camelcase=False,
)

Scalars

All Scalar types accept the following arguments. All are optional:

name: string

Override the name of the Field.

description: string

A description of the type to show in the GraphiQL browser.

required: boolean

If True, the server will enforce a value for this field. See NonNull. Default is False.

deprecation_reason: string

Provide a deprecation reason for the Field.

default_value: any

Provide a default value for the Field.

Base scalars

Graphene defines the following base Scalar Types:

graphene.String

Represents textual data, represented as UTF-8
character sequences. The String type is most often used by GraphQL to
represent free-form human-readable text.

graphene.Int

Represents non-fractional signed whole numeric
values. Int is a signed 32‐bit integer per the
GraphQL spec [https://facebook.github.io/graphql/June2018/#sec-Int]

graphene.Float

Represents signed double-precision fractional
values as specified by
IEEE 754 [http://en.wikipedia.org/wiki/IEEE_floating_point].

graphene.Boolean

Represents true or false.

graphene.ID

Represents a unique identifier, often used to
refetch an object or as key for a cache. The ID type appears in a JSON
response as a String; however, it is not intended to be human-readable.
When expected as an input type, any string (such as “4”) or integer
(such as 4) input value will be accepted as an ID.

Graphene also provides custom scalars for Dates, Times, and JSON:

graphene.types.datetime.Date

Represents a Date value as specified by iso8601 [https://en.wikipedia.org/wiki/ISO_8601].

graphene.types.datetime.DateTime

Represents a DateTime value as specified by iso8601 [https://en.wikipedia.org/wiki/ISO_8601].

graphene.types.datetime.Time

Represents a Time value as specified by iso8601 [https://en.wikipedia.org/wiki/ISO_8601].

graphene.types.json.JSONString

Represents a JSON string.

Custom scalars

You can create custom scalars for your schema.
The following is an example for creating a DateTime scalar:

import datetime
from graphene.types import Scalar
from graphql.language import ast

class DateTime(Scalar):
 '''DateTime Scalar Description'''

 @staticmethod
 def serialize(dt):
 return dt.isoformat()

 @staticmethod
 def parse_literal(node):
 if isinstance(node, ast.StringValue):
 return datetime.datetime.strptime(
 node.value, "%Y-%m-%dT%H:%M:%S.%f")

 @staticmethod
 def parse_value(value):
 return datetime.datetime.strptime(value, "%Y-%m-%dT%H:%M:%S.%f")

Mounting Scalars

Scalars mounted in a ObjectType, Interface or Mutation act as
Fields.

class Person(graphene.ObjectType):
 name = graphene.String()

Is equivalent to:
class Person(graphene.ObjectType):
 name = graphene.Field(graphene.String)

Note: when using the Field constructor directly, pass the type and
not an instance.

Types mounted in a Field act as Arguments.

graphene.Field(graphene.String, to=graphene.String())

Is equivalent to:
graphene.Field(graphene.String, to=graphene.Argument(graphene.String))

Lists and Non-Null

Object types, scalars, and enums are the only kinds of types you can
define in Graphene. But when you use the types in other parts of the
schema, or in your query variable declarations, you can apply additional
type modifiers that affect validation of those values.

NonNull

import graphene

class Character(graphene.ObjectType):
 name = graphene.NonNull(graphene.String)

Here, we’re using a String type and marking it as Non-Null by wrapping
it using the NonNull class. This means that our server always expects
to return a non-null value for this field, and if it ends up getting a
null value that will actually trigger a GraphQL execution error,
letting the client know that something has gone wrong.

The previous NonNull code snippet is also equivalent to:

import graphene

class Character(graphene.ObjectType):
 name = graphene.String(required=True)

List

import graphene

class Character(graphene.ObjectType):
 appears_in = graphene.List(graphene.String)

Lists work in a similar way: We can use a type modifier to mark a type as a
List, which indicates that this field will return a list of that type.
It works the same for arguments, where the validation step will expect a list
for that value.

NonNull Lists

By default items in a list will be considered nullable. To define a list without
any nullable items the type needs to be marked as NonNull. For example:

import graphene

class Character(graphene.ObjectType):
 appears_in = graphene.List(graphene.NonNull(graphene.String))

The above results in the type definition:

type Character {
 appearsIn: [String!]
}

ObjectType

A Graphene ObjectType is the building block used to define the relationship between Fields in your Schema and how their data is retrieved.

The basics:

	Each ObjectType is a Python class that inherits from graphene.ObjectType.

	Each attribute of the ObjectType represents a Field.

	Each Field has a resolver method to fetch data (or Default Resolver).

Quick example

This example model defines a Person, with a first and a last name:

from graphene import ObjectType, String

class Person(ObjectType):
 first_name = String()
 last_name = String()
 full_name = String()

 def resolve_full_name(parent, info):
 return f"{parent.first_name} {parent.last_name}"

This ObjectType defines the field first_name, last_name, and full_name. Each field is specified as a class attribute, and each attribute maps to a Field. Data is fetched by our resolve_full_name resolver method for full_name field and the Default Resolver for other fields.

The above Person ObjectType has the following schema representation:

type Person {
 firstName: String
 lastName: String
 fullName: String
}

Resolvers

A Resolver is a method that helps us answer Queries by fetching data for a Field in our Schema.

Resolvers are lazily executed, so if a field is not included in a query, its resolver will not be executed.

Each field on an ObjectType in Graphene should have a corresponding resolver method to fetch data. This resolver method should match the field name. For example, in the Person type above, the full_name field is resolved by the method resolve_full_name.

Each resolver method takes the parameters:
* Parent Value Object (parent) for the value object use to resolve most fields
* GraphQL Execution Info (info) for query and schema meta information and per-request context
* GraphQL Arguments (**kwargs) as defined on the Field.

Resolver Parameters

Parent Value Object (parent)

This parameter is typically used to derive the values for most fields on an ObjectType.

The first parameter of a resolver method (parent) is the value object returned from the resolver of the parent field. If there is no parent field, such as a root Query field, then the value for parent is set to the root_value configured while executing the query (default None). See Executing a query for more details on executing queries.

Resolver example

If we have a schema with Person type and one field on the root query.

from graphene import ObjectType, String, Field

class Person(ObjectType):
 full_name = String()

 def resolve_full_name(parent, info):
 return f"{parent.first_name} {parent.last_name}"

class Query(ObjectType):
 me = Field(Person)

 def resolve_me(parent, info):
 # returns an object that represents a Person
 return get_human(name="Luke Skywalker")

When we execute a query against that schema.

schema = Schema(query=Query)

query_string = "{ me { fullName } }"
result = schema.execute(query_string)

assert result["data"]["me"] == {"fullName": "Luke Skywalker")

Then we go through the following steps to resolve this query:

	parent is set with the root_value from query execution (None).

	Query.resolve_me called with parent None which returns a value object Person("Luke", "Skywalker").

	This value object is then used as parent while calling Person.resolve_full_name to resolve the scalar String value “Luke Skywalker”.

	The scalar value is serialized and sent back in the query response.

Each resolver returns the next Parent Value Object (parent) to be used in executing the following resolver in the chain. If the Field is a Scalar type, that value will be serialized and sent in the Response. Otherwise, while resolving Compound types like ObjectType, the value be passed forward as the next Parent Value Object (parent).

Naming convention

This Parent Value Object (parent) is sometimes named obj, parent, or source in other GraphQL documentation. It can also be named after the value object being resolved (ex. root for a root Query or Mutation, and person for a Person value object). Sometimes this argument will be named self in Graphene code, but this can be misleading due to Implicit staticmethod while executing queries in Graphene.

GraphQL Execution Info (info)

The second parameter provides two things:

	reference to meta information about the execution of the current GraphQL Query (fields, schema, parsed query, etc.)

	access to per-request context which can be used to store user authentication, data loader instances or anything else useful for resolving the query.

Only context will be required for most applications. See Context for more information about setting context.

GraphQL Arguments (**kwargs)

Any arguments that a field defines gets passed to the resolver function as
keyword arguments. For example:

from graphene import ObjectType, Field, String

class Query(ObjectType):
 human_by_name = Field(Human, name=String(required=True))

 def resolve_human_by_name(parent, info, name):
 return get_human(name=name)

You can then execute the following query:

query {
 humanByName(name: "Luke Skywalker") {
 firstName
 lastName
 }
}

Convenience Features of Graphene Resolvers

Implicit staticmethod

One surprising feature of Graphene is that all resolver methods are treated implicitly as staticmethods. This means that, unlike other methods in Python, the first argument of a resolver is never self while it is being executed by Graphene. Instead, the first argument is always Parent Value Object (parent). In practice, this is very convenient as, in GraphQL, we are almost always more concerned with the using the parent value object to resolve queries than attributes on the Python object itself.

The two resolvers in this example are effectively the same.

from graphene import ObjectType, String

class Person(ObjectType):
 first_name = String()
 last_name = String()

 @staticmethod
 def resolve_first_name(parent, info):
 '''
 Decorating a Python method with `staticmethod` ensures that `self` will not be provided as an
 argument. However, Graphene does not need this decorator for this behavior.
 '''
 return parent.first_name

 def resolve_last_name(parent, info):
 '''
 Normally the first argument for this method would be `self`, but Graphene executes this as
 a staticmethod implicitly.
 '''
 return parent.last_name

 # ...

If you prefer your code to be more explict, feel free to use @staticmethod decorators. Otherwise, your code may be cleaner without them!

Default Resolver

If a resolver method is not defined for a Field attribute on our ObjectType, Graphene supplies a default resolver.

If the Parent Value Object (parent) is a dictionary, the resolver will look for a dictionary key matching the field name. Otherwise, the resolver will get the attribute from the parent value object matching the field name.

from collections import namedtuple

from graphene import ObjectType, String, Field, Schema

PersonValueObject = namedtuple('Person', 'first_name', 'last_name')

class Person(ObjectType):
 first_name = String()
 last_name = String()

class Query(ObjectType):
 me = Field(Person)
 my_best_friend = Field(Person)

 def resolve_me(parent, info):
 # always pass an object for `me` field
 return PersonValueObject(first_name='Luke', last_name='Skywalker')

 def resolve_my_best_friend(parent, info):
 # always pass a dictionary for `my_best_fiend_field`
 return {"first_name": "R2", "last_name": "D2"}

schema = Schema(query=Query)
result = schema.execute('''
 {
 me { firstName lastName }
 myBestFriend { firstName lastName }
 }
''')
With default resolvers we can resolve attributes from an object..
assert result['data']['me'] == {"firstName": "Luke", "lastName": "Skywalker"}

With default resolvers, we can also resolve keys from a dictionary..
assert result['data']['my_best_friend'] == {"firstName": "R2", "lastName": "D2"}

Advanced

GraphQL Argument defaults

If you define an argument for a field that is not required (and in a query
execution it is not provided as an argument) it will not be passed to the
resolver function at all. This is so that the developer can differenciate
between a undefined value for an argument and an explicit null value.

For example, given this schema:

from graphene import ObjectType, String

class Query(ObjectType):
 hello = String(required=True, name=String())

 def resolve_hello(parent, info, name):
 return name if name else 'World'

And this query:

query {
 hello
}

An error will be thrown:

TypeError: resolve_hello() missing 1 required positional argument: 'name'

You can fix this error in serveral ways. Either by combining all keyword arguments
into a dict:

from graphene import ObjectType, String

class Query(ObjectType):
 hello = String(required=True, name=String())

 def resolve_hello(parent, info, **kwargs):
 name = kwargs.get('name', 'World')
 return f'Hello, {name}!'

Or by setting a default value for the keyword argument:

from graphene import ObjectType, String

class Query(ObjectType):
 hello = String(required=True, name=String())

 def resolve_hello(parent, info, name='World'):
 return f'Hello, {name}!'

One can also set a default value for an Argument in the GraphQL schema itself using Graphene!

from graphene import ObjectType, String

class Query(ObjectType):
 hello = String(
 required=True,
 name=String(default_value='World')
)

 def resolve_hello(parent, info, name):
 return f'Hello, {name}!'

Resolvers outside the class

A field can use a custom resolver from outside the class:

from graphene import ObjectType, String

def resolve_full_name(person, info):
 return '{} {}'.format(person.first_name, person.last_name)

class Person(ObjectType):
 first_name = String()
 last_name = String()
 full_name = String(resolver=resolve_full_name)

Instances as value objects

Graphene ObjectTypes can act as value objects too. So with the
previous example you could use Person to capture data for each of the ObjectType‘s fields.

peter = Person(first_name='Peter', last_name='Griffin')

peter.first_name # prints "Peter"
peter.last_name # prints "Griffin"

Field camelcasing

Graphene automatically camelcases fields on ObjectType from field_name to fieldName to conform with GraphQL standards. See Auto CamelCase field names for more information.

ObjectType Configuration - Meta class

Graphene uses a Meta inner class on ObjectType to set different options.

GraphQL type name

By default the type name in the GraphQL schema will be the same as the class name
that defines the ObjectType. This can be changed by setting the name
property on the Meta class:

from graphene import ObjectType

class MyGraphQlSong(ObjectType):
 class Meta:
 name = 'Song'

GraphQL Description

The schema description of an ObjectType can be set as a docstring on the Python object or on the Meta inner class.

from graphene import ObjectType

class MyGraphQlSong(ObjectType):
 ''' We can set the schema description for an Object Type here on a docstring '''
 class Meta:
 description = 'But if we set the description in Meta, this value is used instead'

Interfaces & Possible Types

Setting interfaces in Meta inner class specifies the GraphQL Interfaces that this Object implements.

Providing possible_types helps Graphene resolve ambiguous types such as interfaces or Unions.

See Interfaces for more information.

from graphene import ObjectType, Node

Song = namedtuple('Song', ('title', 'artist'))

class MyGraphQlSong(ObjectType):
 class Meta:
 interfaces = (Node,)
 possible_types = (Song,)

Enums

An Enum is a special GraphQL type that represents a set of
symbolic names (members) bound to unique, constant values.

Definition

You can create an Enum using classes:

import graphene

class Episode(graphene.Enum):
 NEWHOPE = 4
 EMPIRE = 5
 JEDI = 6

But also using instances of Enum:

Episode = graphene.Enum('Episode', [('NEWHOPE', 4), ('EMPIRE', 5), ('JEDI', 6)])

Value descriptions

It’s possible to add a description to an enum value, for that the enum value
needs to have the description property on it.

class Episode(graphene.Enum):
 NEWHOPE = 4
 EMPIRE = 5
 JEDI = 6

 @property
 def description(self):
 if self == Episode.NEWHOPE:
 return 'New Hope Episode'
 return 'Other episode'

Usage with Python Enums

In case the Enums are already defined it’s possible to reuse them using
the Enum.from_enum function.

graphene.Enum.from_enum(AlreadyExistingPyEnum)

Enum.from_enum supports a description and deprecation_reason lambdas as input so
you can add description etc. to your enum without changing the original:

graphene.Enum.from_enum(
 AlreadyExistingPyEnum,
 description=lambda v: return 'foo' if v == AlreadyExistingPyEnum.Foo else 'bar')

Notes

graphene.Enum uses enum.Enum [https://docs.python.org/3/library/enum.html] internally (or a backport if
that’s not available) and can be used in a similar way, with the exception of
member getters.

In the Python Enum implementation you can access a member by initing the Enum.

from enum import Enum
class Color(Enum):
 RED = 1
 GREEN = 2
 BLUE = 3

assert Color(1) == Color.RED

However, in Graphene Enum you need to call get to have the same effect:

from graphene import Enum
class Color(Enum):
 RED = 1
 GREEN = 2
 BLUE = 3

assert Color.get(1) == Color.RED

Interfaces

An Interface is an abstract type that defines a certain set of fields that a
type must include to implement the interface.

For example, you can define an Interface Character that represents any
character in the Star Wars trilogy:

import graphene

class Character(graphene.Interface):
 id = graphene.ID(required=True)
 name = graphene.String(required=True)
 friends = graphene.List(lambda: Character)

Any ObjectType that implements Character will have these exact fields, with
these arguments and return types.

For example, here are some types that might implement Character:

class Human(graphene.ObjectType):
 class Meta:
 interfaces = (Character,)

 starships = graphene.List(Starship)
 home_planet = graphene.String()

class Droid(graphene.ObjectType):
 class Meta:
 interfaces = (Character,)

 primary_function = graphene.String()

Both of these types have all of the fields from the Character interface,
but also bring in extra fields, home_planet, starships and
primary_function, that are specific to that particular type of character.

The full GraphQL schema defition will look like this:

interface Character {
 id: ID!
 name: String!
 friends: [Character]
}

type Human implements Character {
 id: ID!
 name: String!
 friends: [Character]
 starships: [Starship]
 homePlanet: String
}

type Droid implements Character {
 id: ID!
 name: String!
 friends: [Character]
 primaryFunction: String
}

Interfaces are useful when you want to return an object or set of objects,
which might be of several different types.

For example, you can define a field hero that resolves to any
Character, depending on the episode, like this:

class Query(graphene.ObjectType):
 hero = graphene.Field(
 Character,
 required=True,
 episode=graphene.Int(required=True)
)

 def resolve_hero(root, info, episode):
 # Luke is the hero of Episode V
 if episode == 5:
 return get_human(name='Luke Skywalker')
 return get_droid(name='R2-D2')

schema = graphene.Schema(query=Query, types=[Human, Droid])

This allows you to directly query for fields that exist on the Character interface
as well as selecting specific fields on any type that implements the interface
using inline fragments [https://graphql.org/learn/queries/#inline-fragments].

For example, the following query:

query HeroForEpisode($episode: Int!) {
 hero(episode: $episode) {
 __typename
 name
 ... on Droid {
 primaryFunction
 }
 ... on Human {
 homePlanet
 }
 }
}

Will return the following data with variables { "episode": 4 }:

{
 "data": {
 "hero": {
 "__typename": "Droid",
 "name": "R2-D2",
 "primaryFunction": "Astromech"
 }
 }
}

And different data with the variables { "episode": 5 }:

{
 "data": {
 "hero": {
 "__typename": "Human",
 "name": "Luke Skywalker",
 "homePlanet": "Tatooine"
 }
 }
}

Resolving data objects to types

As you build out your schema in Graphene it’s common for your resolvers to
return objects that represent the data backing your GraphQL types rather than
instances of the Graphene types (e.g. Django or SQLAlchemy models). This works
well with ObjectType and Scalar fields, however when you start using
Interfaces you might come across this error:

"Abstract type Character must resolve to an Object type at runtime for field Query.hero ..."

This happens because Graphene doesn’t have enough information to convert the
data object into a Graphene type needed to resolve the Interface. To solve
this you can define a resolve_type class method on the Interface which
maps a data object to a Graphene type:

class Character(graphene.Interface):
 id = graphene.ID(required=True)
 name = graphene.String(required=True)

 @classmethod
 def resolve_type(cls, instance, info):
 if instance.type == 'DROID':
 return Droid
 return Human

Unions

Union types are very similar to interfaces, but they don’t get
to specify any common fields between the types.

The basics:

	Each Union is a Python class that inherits from graphene.Union.

	Unions don’t have any fields on it, just links to the possible objecttypes.

Quick example

This example model defines several ObjectTypes with their own fields.
SearchResult is the implementation of Union of this object types.

import graphene

class Human(graphene.ObjectType):
 name = graphene.String()
 born_in = graphene.String()

class Droid(graphene.ObjectType):
 name = graphene.String()
 primary_function = graphene.String()

class Starship(graphene.ObjectType):
 name = graphene.String()
 length = graphene.Int()

class SearchResult(graphene.Union):
 class Meta:
 types = (Human, Droid, Starship)

Wherever we return a SearchResult type in our schema, we might get a Human, a Droid, or a Starship.
Note that members of a union type need to be concrete object types;
you can’t create a union type out of interfaces or other unions.

The above types have the following representation in a schema:

type Droid {
 name: String
 primaryFunction: String
}

type Human {
 name: String
 bornIn: String
}

type Ship {
 name: String
 length: Int
}

union SearchResult = Human | Droid | Starship

Mutations

A Mutation is a special ObjectType that also defines an Input.

Quick example

This example defines a Mutation:

import graphene

class CreatePerson(graphene.Mutation):
 class Arguments:
 name = graphene.String()

 ok = graphene.Boolean()
 person = graphene.Field(lambda: Person)

 def mutate(root, info, name):
 person = Person(name=name)
 ok = True
 return CreatePerson(person=person, ok=ok)

person and ok are the output fields of the Mutation when it is
resolved.

Arguments attributes are the arguments that the Mutation
CreatePerson needs for resolving, in this case name will be the
only argument for the mutation.

mutate is the function that will be applied once the mutation is
called. This method is just a special resolver that we can change
data within. It takes the same arguments as the standard query Resolver Parameters.

So, we can finish our schema like this:

... the Mutation Class

class Person(graphene.ObjectType):
 name = graphene.String()
 age = graphene.Int()

class MyMutations(graphene.ObjectType):
 create_person = CreatePerson.Field()

We must define a query for our schema
class Query(graphene.ObjectType):
 person = graphene.Field(Person)

schema = graphene.Schema(query=Query, mutation=MyMutations)

Executing the Mutation

Then, if we query (schema.execute(query_str)) the following:

mutation myFirstMutation {
 createPerson(name:"Peter") {
 person {
 name
 }
 ok
 }
}

We should receive:

{
 "createPerson": {
 "person" : {
 "name": "Peter"
 },
 "ok": true
 }
}

InputFields and InputObjectTypes

InputFields are used in mutations to allow nested input data for mutations

To use an InputField you define an InputObjectType that specifies the structure of your input data

import graphene

class PersonInput(graphene.InputObjectType):
 name = graphene.String(required=True)
 age = graphene.Int(required=True)

class CreatePerson(graphene.Mutation):
 class Arguments:
 person_data = PersonInput(required=True)

 person = graphene.Field(Person)

 @staticmethod
 def mutate(root, info, person_data=None):
 person = Person(
 name=person_data.name,
 age=person_data.age
)
 return CreatePerson(person=person)

Note that name and age are part of person_data now

Using the above mutation your new query would look like this:

mutation myFirstMutation {
 createPerson(personData: {name:"Peter", age: 24}) {
 person {
 name,
 age
 }
 }
}

InputObjectTypes can also be fields of InputObjectTypes allowing you to have
as complex of input data as you need

import graphene

class LatLngInput(graphene.InputObjectType):
 lat = graphene.Float()
 lng = graphene.Float()

#A location has a latlng associated to it
class LocationInput(graphene.InputObjectType):
 name = graphene.String()
 latlng = graphene.InputField(LatLngInput)

Output type example

To return an existing ObjectType instead of a mutation-specific type, set the Output attribute to the desired ObjectType:

import graphene

class CreatePerson(graphene.Mutation):
 class Arguments:
 name = graphene.String()

 Output = Person

 def mutate(root, info, name):
 return Person(name=name)

Then, if we query (schema.execute(query_str)) the following:

mutation myFirstMutation {
 createPerson(name:"Peter") {
 name
 __typename
 }
}

We should receive:

{
 "createPerson": {
 "name": "Peter",
 "__typename": "Person"
 }
}

AbstractTypes

An AbstractType contains fields that can be shared among
graphene.ObjectType, graphene.Interface,
graphene.InputObjectType or other graphene.AbstractType.

The basics:

	Each AbstractType is a Python class that inherits from graphene.AbstractType.

	Each attribute of the AbstractType represents a field (a graphene.Field or
graphene.InputField depending on where it is mounted)

Quick example

In this example UserFields is an AbstractType with a name. User and
UserInput are two types that have their own fields
plus the ones defined in UserFields.

import graphene

class UserFields(graphene.AbstractType):
 name = graphene.String()

class User(graphene.ObjectType, UserFields):
 pass

class UserInput(graphene.InputObjectType, UserFields):
 pass

type User {
 name: String
}

inputtype UserInput {
 name: String
}

Execution

	Executing a query
	Context

	Variables

	Root Value

	Operation Name

	Middleware
	Resolve arguments

	Example

	Functional example

	Dataloader
	Batching

	Using with Graphene

Executing a query

For executing a query a schema, you can directly call the execute method on it.

from graphene import Schema

schema = Schema(...)
result = schema.execute('{ name }')

result represents the result of execution. result.data is the result of executing the query, result.errors is None if no errors occurred, and is a non-empty list if an error occurred.

Context

You can pass context to a query via context.

from graphene import ObjectType, String, Schema

class Query(ObjectType):
 name = String()

 def resolve_name(root, info):
 return info.context.get('name')

schema = Schema(Query)
result = schema.execute('{ name }', context={'name': 'Syrus'})
assert result.data['name'] == 'Syrus'

Variables

You can pass variables to a query via variables.

from graphene import ObjectType, Field, ID, Schema

class Query(ObjectType):
 user = Field(User, id=ID(required=True))

 def resolve_user(root, info, id):
 return get_user_by_id(id)

schema = Schema(Query)
result = schema.execute(
 '''
 query getUser($id: ID) {
 user(id: $id) {
 id
 firstName
 lastName
 }
 }
 ''',
 variables={'id': 12},
)

Root Value

Value used for Parent Value Object (parent) in root queries and mutations can be overridden using root parameter.

from graphene import ObjectType, Field, Schema

class Query(ObjectType):
 me = Field(User)

 def resolve_user(root, info):
 return {'id': root.id, 'firstName': root.name}

schema = Schema(Query)
user_root = User(id=12, name='bob'}
result = schema.execute(
 '''
 query getUser {
 user {
 id
 firstName
 lastName
 }
 }
 ''',
 root=user_root
)
assert result.data['user']['id'] == user_root.id

Operation Name

If there are multiple operations defined in a query string, operation_name should be used to indicate which should be executed.

from graphene import ObjectType, Field, Schema

class Query(ObjectType):
 me = Field(User)

 def resolve_user(root, info):
 return get_user_by_id(12)

schema = Schema(Query)
query_string = '''
 query getUserWithFirstName {
 user {
 id
 firstName
 lastName
 }
 }
 query getUserWithFullName {
 user {
 id
 fullName
 }
 }
'''
result = schema.execute(
 query_string,
 operation_name='getUserWithFullName'
)
assert result.data['user']['fullName']

Middleware

You can use middleware to affect the evaluation of fields in your schema.

A middleware is any object or function that responds to resolve(next_middleware, *args).

Inside that method, it should either:

	Send resolve to the next middleware to continue the evaluation; or

	Return a value to end the evaluation early.

Resolve arguments

Middlewares resolve is invoked with several arguments:

	next represents the execution chain. Call next to continue evaluation.

	root is the root value object passed throughout the query.

	info is the resolver info.

	args is the dict of arguments passed to the field.

Example

This middleware only continues evaluation if the field_name is not 'user'

class AuthorizationMiddleware(object):
 def resolve(next, root, info, **args):
 if info.field_name == 'user':
 return None
 return next(root, info, **args)

And then execute it with:

result = schema.execute('THE QUERY', middleware=[AuthorizationMiddleware()])

Functional example

Middleware can also be defined as a function. Here we define a middleware that
logs the time it takes to resolve each field

from time import time as timer

def timing_middleware(next, root, info, **args):
 start = timer()
 return_value = next(root, info, **args)
 duration = timer() - start
 logger.debug("{parent_type}.{field_name}: {duration} ms".format(
 parent_type=root._meta.name if root and hasattr(root, '_meta') else '',
 field_name=info.field_name,
 duration=round(duration * 1000, 2)
))
 return return_value

And then execute it with:

result = schema.execute('THE QUERY', middleware=[timing_middleware])

Dataloader

DataLoader is a generic utility to be used as part of your application’s
data fetching layer to provide a simplified and consistent API over
various remote data sources such as databases or web services via batching
and caching.

Batching

Batching is not an advanced feature, it’s DataLoader’s primary feature.
Create loaders by providing a batch loading function.

from promise import Promise
from promise.dataloader import DataLoader

class UserLoader(DataLoader):
 def batch_load_fn(self, keys):
 # Here we return a promise that will result on the
 # corresponding user for each key in keys
 return Promise.resolve([get_user(id=key) for key in keys])

A batch loading function accepts a list of keys, and returns a Promise
which resolves to a list of values.

Then load individual values from the loader. DataLoader will coalesce all
individual loads which occur within a single frame of execution (executed once
the wrapping promise is resolved) and then call your batch function with all
requested keys.

user_loader = UserLoader()

user_loader.load(1).then(lambda user: user_loader.load(user.best_friend_id))

user_loader.load(2).then(lambda user: user_loader.load(user.best_friend_id))

A naive application may have issued four round-trips to a backend for the
required information, but with DataLoader this application will make at most two.

Note that loaded values are one-to-one with the keys and must have the same
order. This means that if you load all values from a single query, you must
make sure that you then order the query result for the results to match the keys:

class UserLoader(DataLoader):
 def batch_load_fn(self, keys):
 users = {user.id: user for user in User.objects.filter(id__in=keys)}
 return Promise.resolve([users.get(user_id) for user_id in keys])

DataLoader allows you to decouple unrelated parts of your application without
sacrificing the performance of batch data-loading. While the loader presents
an API that loads individual values, all concurrent requests will be coalesced
and presented to your batch loading function. This allows your application to
safely distribute data fetching requirements throughout your application and
maintain minimal outgoing data requests.

Using with Graphene

DataLoader pairs nicely well with Graphene/GraphQL. GraphQL fields are designed
to be stand-alone functions. Without a caching or batching mechanism, it’s easy
for a naive GraphQL server to issue new database requests each time a field is resolved.

Consider the following GraphQL request:

{
 me {
 name
 bestFriend {
 name
 }
 friends(first: 5) {
 name
 bestFriend {
 name
 }
 }
 }
}

Naively, if me, bestFriend and friends each need to request the backend,
there could be at most 13 database requests!

When using DataLoader, we could define the User type using our previous example with
leaner code and at most 4 database requests, and possibly fewer if there are cache hits.

class User(graphene.ObjectType):
 name = graphene.String()
 best_friend = graphene.Field(lambda: User)
 friends = graphene.List(lambda: User)

 def resolve_best_friend(root, info):
 return user_loader.load(root.best_friend_id)

 def resolve_friends(root, info):
 return user_loader.load_many(root.friend_ids)

Relay

Graphene has complete support for Relay [https://facebook.github.io/relay/docs/en/graphql-server-specification.html] and offers some utils to make
integration from Python easy.

	Nodes
	Quick example

	Custom Nodes

	Accessing node types

	Node Root field

	Connection
	Quick example

	Connection Field

	Mutations
	Accepting Files

Useful links

	Getting started with Relay [https://facebook.github.io/relay/docs/en/quick-start-guide.html]

	Relay Global Identification Specification [https://facebook.github.io/relay/graphql/objectidentification.htm]

	Relay Cursor Connection Specification [https://facebook.github.io/relay/graphql/connections.htm]

	Relay input Object Mutation [https://facebook.github.io/relay/graphql/mutations.htm]

Nodes

A Node is an Interface provided by graphene.relay that contains
a single field id (which is a ID!). Any object that inherits
from it has to implement a get_node method for retrieving a
Node by an id.

Quick example

Example usage (taken from the Starwars Relay example [https://github.com/graphql-python/graphene/blob/master/examples/starwars_relay/schema.py]):

class Ship(graphene.ObjectType):
 '''A ship in the Star Wars saga'''
 class Meta:
 interfaces = (relay.Node,)

 name = graphene.String(description='The name of the ship.')

 @classmethod
 def get_node(cls, info, id):
 return get_ship(id)

The id returned by the Ship type when you query it will be a
scalar which contains enough info for the server to know its type and
its id.

For example, the instance Ship(id=1) will return U2hpcDox as the
id when you query it (which is the base64 encoding of Ship:1), and
which could be useful later if we want to query a node by its id.

Custom Nodes

You can use the predefined relay.Node or you can subclass it, defining
custom ways of how a node id is encoded (using the to_global_id method in the class)
or how we can retrieve a Node given a encoded id (with the get_node_from_global_id method).

Example of a custom node:

class CustomNode(Node):

 class Meta:
 name = 'Node'

 @staticmethod
 def to_global_id(type, id):
 return '{}:{}'.format(type, id)

 @staticmethod
 def get_node_from_global_id(info, global_id, only_type=None):
 type, id = global_id.split(':')
 if only_type:
 # We assure that the node type that we want to retrieve
 # is the same that was indicated in the field type
 assert type == only_type._meta.name, 'Received not compatible node.'

 if type == 'User':
 return get_user(id)
 elif type == 'Photo':
 return get_photo(id)

The get_node_from_global_id method will be called when CustomNode.Field is resolved.

Accessing node types

If we want to retrieve node instances from a global_id (scalar that identifies an instance by it’s type name and id),
we can simply do Node.get_node_from_global_id(info, global_id).

In the case we want to restrict the instance retrieval to a specific type, we can do:
Node.get_node_from_global_id(info, global_id, only_type=Ship). This will raise an error
if the global_id doesn’t correspond to a Ship type.

Node Root field

As is required in the Relay specification [https://facebook.github.io/relay/docs/graphql-relay-specification.html], the server must implement
a root field called node that returns a Node Interface.

For this reason, graphene provides the field relay.Node.Field,
which links to any type in the Schema which implements Node.
Example usage:

class Query(graphene.ObjectType):
 # Should be CustomNode.Field() if we want to use our custom Node
 node = relay.Node.Field()

Connection

A connection is a vitaminized version of a List that provides ways of
slicing and paginating through it. The way you create Connection types
in graphene is using relay.Connection and relay.ConnectionField.

Quick example

If we want to create a custom Connection on a given node, we have to subclass the
Connection class.

In the following example, extra will be an extra field in the connection,
and other an extra field in the Connection Edge.

class ShipConnection(Connection):
 extra = String()

 class Meta:
 node = Ship

 class Edge:
 other = String()

The ShipConnection connection class, will have automatically a pageInfo field,
and a edges field (which is a list of ShipConnection.Edge).
This Edge will have a node field linking to the specified node
(in ShipConnection.Meta) and the field other that we defined in the class.

Connection Field

You can create connection fields in any Connection, in case any ObjectType
that implements Node will have a default Connection.

class Faction(graphene.ObjectType):
 name = graphene.String()
 ships = relay.ConnectionField(ShipConnection)

 def resolve_ships(root, info):
 return []

Mutations

Most APIs don’t just allow you to read data, they also allow you to
write.

In GraphQL, this is done using mutations. Just like queries,
Relay puts some additional requirements on mutations, but Graphene
nicely manages that for you. All you need to do is make your mutation a
subclass of relay.ClientIDMutation.

class IntroduceShip(relay.ClientIDMutation):

 class Input:
 ship_name = graphene.String(required=True)
 faction_id = graphene.String(required=True)

 ship = graphene.Field(Ship)
 faction = graphene.Field(Faction)

 @classmethod
 def mutate_and_get_payload(cls, root, info, **input):
 ship_name = input.ship_name
 faction_id = input.faction_id
 ship = create_ship(ship_name, faction_id)
 faction = get_faction(faction_id)
 return IntroduceShip(ship=ship, faction=faction)

Accepting Files

Mutations can also accept files, that’s how it will work with different integrations:

class UploadFile(graphene.ClientIDMutation):
 class Input:
 pass
 # nothing needed for uploading file

 # your return fields
 success = graphene.String()

 @classmethod
 def mutate_and_get_payload(cls, root, info, **input):
 # When using it in Django, context will be the request
 files = info.context.FILES
 # Or, if used in Flask, context will be the flask global request
 # files = context.files

 # do something with files

 return UploadFile(success=True)

Testing in Graphene

Automated testing is an extremely useful bug-killing tool for the modern developer. You can use a collection of tests – a test suite – to solve, or avoid, a number of problems:

	When you’re writing new code, you can use tests to validate your code works as expected.

	When you’re refactoring or modifying old code, you can use tests to ensure your changes haven’t affected your application’s behavior unexpectedly.

Testing a GraphQL application is a complex task, because a GraphQL application is made of several layers of logic – schema definition, schema validation, permissions and field resolution.

With Graphene test-execution framework and assorted utilities, you can simulate GraphQL requests, execute mutations, inspect your application’s output and generally verify your code is doing what it should be doing.

Testing tools

Graphene provides a small set of tools that come in handy when writing tests.

Test Client

The test client is a Python class that acts as a dummy GraphQL client, allowing you to test your views and interact with your Graphene-powered application programmatically.

Some of the things you can do with the test client are:

	Simulate Queries and Mutations and observe the response.

	Test that a given query request is rendered by a given Django template, with a template context that contains certain values.

Overview and a quick example

To use the test client, instantiate graphene.test.Client and retrieve GraphQL responses:

from graphene.test import Client

def test_hey():
 client = Client(my_schema)
 executed = client.execute('''{ hey }''')
 assert executed == {
 'data': {
 'hey': 'hello!'
 }
 }

Execute parameters

You can also add extra keyword arguments to the execute method, such as
context, root, variables, ...:

from graphene.test import Client

def test_hey():
 client = Client(my_schema)
 executed = client.execute('''{ hey }''', context={'user': 'Peter'})
 assert executed == {
 'data': {
 'hey': 'hello Peter!'
 }
 }

Snapshot testing

As our APIs evolve, we need to know when our changes introduce any breaking changes that might break
some of the clients of our GraphQL app.

However, writing tests and replicate the same response we expect from our GraphQL application can be
tedious and repetitive task, and sometimes it’s easier to skip this process.

Because of that, we recommend the usage of SnapshotTest [https://github.com/syrusakbary/snapshottest/].

SnapshotTest let us write all this tests in a breeze, as creates automatically the snapshots for us
the first time the test is executed.

Here is a simple example on how our tests will look if we use pytest:

def test_hey(snapshot):
 client = Client(my_schema)
 # This will create a snapshot dir and a snapshot file
 # the first time the test is executed, with the response
 # of the execution.
 snapshot.assert_match(client.execute('''{ hey }'''))

If we are using unittest:

from snapshottest import TestCase

class APITestCase(TestCase):
 def test_api_me(self):
 """Testing the API for /me"""
 client = Client(my_schema)
 self.assertMatchSnapshot(client.execute('''{ hey }'''))

API Reference

Schema

	
class graphene.types.schema.Schema(query=None, mutation=None, subscription=None, directives=None, types=None, auto_camelcase=True)[source]

	Graphene Schema can execute operations (query, mutation, subscription) against the defined
types.

For advanced purposes, the schema can be used to lookup type definitions and answer questions
about the types through introspection.

	Parameters:	
	query (ObjectType) – Root query ObjectType. Describes entry point for fields to read
data in your Schema.

	mutation (ObjectType, optional) – Root mutation ObjectType. Describes entry point for
fields to create, update or delete data in your API.

	subscription (ObjectType, optional) – Root subscription ObjectType. Describes entry point
for fields to receive continuous updates.

	directives (List[GraphQLDirective], optional) – List of custom directives to include in
GraphQL schema. Defaults to only include directives definved by GraphQL spec (@include
and @skip) [GraphQLIncludeDirective, GraphQLSkipDirective].

	types (List[GraphQLType], optional) – List of any types to include in schema that
may not be introspected through root types.

	auto_camelcase (bool [https://docs.python.org/3/library/functions.html#bool]) – Fieldnames will be transformed in Schema’s TypeMap from snake_case
to camelCase (preferred by GraphQL standard). Default True.

	
execute(*args, **kwargs)[source]

	Use the graphql function from graphql-core to provide the result for a query string.
Most of the time this method will be called by one of the Graphene Integrations
via a web request.

	Parameters:	
	request_string (str [https://docs.python.org/3/library/stdtypes.html#str] or Document) – GraphQL request (query, mutation or subscription) in
string or parsed AST form from graphql-core.

	root (Any, optional) – Value to use as the parent value object when resolving root
types.

	context (Any, optional) – Value to be made avaiable to all resolvers via
info.context. Can be used to share authorization, dataloaders or other
information needed to resolve an operation.

	variables (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If variables are used in the request string, they can be
provided in dictionary form mapping the variable name to the variable value.

	operation_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If mutiple operations are provided in the
request_string, an operation name must be provided for the result to be provided.

	middleware (List[SupportsGraphQLMiddleware]) – Supply request level middleware as
defined in graphql-core.

	backend (GraphQLCoreBackend, optional) – Override the default GraphQLCoreBackend.

	**execute_options (Any) – Depends on backend selected. Default backend has several
options such as: validate, allow_subscriptions, return_promise, executor.

	Returns:	ExecutionResult containing any data and errors for the operation.

Object types

	
class graphene.ObjectType(*args, **kwargs)[source]

	Object Type Definition

Almost all of the GraphQL types you define will be object types. Object types
have a name, but most importantly describe their fields.

The name of the type defined by an _ObjectType_ defaults to the class name. The type
description defaults to the class docstring. This can be overriden by adding attributes
to a Meta inner class.

The class attributes of an _ObjectType_ are mounted as instances of graphene.Field.

Methods starting with resolve_<field_name> are bound as resolvers of the matching Field
name. If no resolver is provided, the default resolver is used.

Ambiguous types with Interface and Union can be determined through``is_type_of`` method and
Meta.possible_types attribute.

from graphene import ObjectType, String, Field

class Person(ObjectType):
 class Meta:
 description = 'A human'

 # implicitly mounted as Field
 first_name = String()
 # explicitly mounted as Field
 last_name = Field(String)

 def resolve_last_name(parent, info):
 return last_name

ObjectType must be mounted using graphene.Field.

from graphene import ObjectType, Field

class Query(ObjectType):

 person = Field(Person, description="My favorite person")

	Meta class options (optional):

	
	name (str): Name of the GraphQL type (must be unique in schema). Defaults to class

	name.

	description (str): Description of the GraphQL type in the schema. Defaults to class

	docstring.

	interfaces (Iterable[graphene.Interface]): GraphQL interfaces to extend with this object.

	all fields from interface will be included in this object’s schema.

	possible_types (Iterable[class]): Used to test parent value object via isintance to see if

	this type can be used to resolve an ambigous type (interface, union).

	default_resolver (any Callable resolver): Override the default resolver for this

	type. Defaults to graphene default resolver which returns an attribute or dictionary
key with the same name as the field.

	fields (Dict[str, graphene.Field]): Dictionary of field name to Field. Not recommended to

	use (prefer class attributes).

An _ObjectType_ can be used as a simple value object by creating an instance of the class.

p = Person(first_name='Bob', last_name='Roberts')
assert p.first_name == 'Bob'

	Parameters:	
	*args (List[Any]) – Positional values to use for Field values of value object

	(Dict[str (**kwargs) – Any]): Keyword arguments to use for Field values of value object

	
class graphene.InputObjectType(*args, **kwargs)[source]

	Input Object Type Definition

An input object defines a structured collection of fields which may be
supplied to a field argument.

Using graphene.NonNull will ensure that a input value must be provided by the query.

All class attributes of graphene.InputObjectType are implicitly mounted as InputField
using the below Meta class options.

from graphene import InputObjectType, String, InputField

class Person(InputObjectType):
 # implicitly mounted as Input Field
 first_name = String(required=True)
 # explicitly mounted as Input Field
 last_name = InputField(String, description="Surname")

The fields on an input object type can themselves refer to input object types, but you can’t
mix input and output types in your schema.

	Meta class options (optional):

	
	name (str): the name of the GraphQL type (must be unique in schema). Defaults to class

	name.

	description (str): the description of the GraphQL type in the schema. Defaults to class

	docstring.

	container (class): A class reference for a value object that allows for

	attribute initialization and access. Default InputObjectTypeContainer.

	fields (Dict[str, graphene.InputField]): Dictionary of field name to InputField. Not

	recommended to use (prefer class attributes).

	
class graphene.Mutation(*args, **kwargs)[source]

	Object Type Definition (mutation field)

Mutation is a convenience type that helps us build a Field which takes Arguments and returns a
mutation Output ObjectType.

from graphene import Mutation, ObjectType, String, Boolean, Field

class CreatePerson(Mutation):
 class Arguments:
 name = String()

 ok = Boolean()
 person = Field(Person)

 def mutate(parent, info, name):
 person = Person(name=name)
 ok = True
 return CreatePerson(person=person, ok=ok)

class Mutation(ObjectType):
 create_person = CreatePerson.Field()

	Meta class options (optional):

	
	output (graphene.ObjectType): Or Output inner class with attributes on Mutation class.

	Or attributes from Mutation class. Fields which can be returned from this mutation
field.

	resolver (Callable resolver method): Or mutate method on Mutation class. Perform data

	change and return output.

	arguments (Dict[str, graphene.Argument]): Or Arguments inner class with attributes on

	Mutation class. Arguments to use for the mutation Field.

	name (str): Name of the GraphQL type (must be unique in schema). Defaults to class

	name.

	description (str): Description of the GraphQL type in the schema. Defaults to class

	docstring.

	interfaces (Iterable[graphene.Interface]): GraphQL interfaces to extend with the payload

	object. All fields from interface will be included in this object’s schema.

	fields (Dict[str, graphene.Field]): Dictionary of field name to Field. Not recommended to

	use (prefer class attributes or Meta.output).

	
classmethod Field(name=None, description=None, deprecation_reason=None, required=False)[source]

	Mount instance of mutation Field.

Fields (Mounted Types)

	
class graphene.Field(type, args=None, resolver=None, source=None, deprecation_reason=None, name=None, description=None, required=False, _creation_counter=None, default_value=None, **extra_args)[source]

	Makes a field available on an ObjectType in the GraphQL schema. Any type can be mounted as a
Field:

	Object Type

	Scalar Type

	Enum

	Interface

	Union

All class attributes of graphene.ObjectType are implicitly mounted as Field using the below
arguments.

class Person(ObjectType):
 first_name = graphene.String(required=True) # implicitly mounted as Field
 last_name = graphene.Field(String, description='Surname') # explicitly mounted as Field

	Parameters:	
	type (class for a graphene.UnmountedType) – must be a class (not an instance) of an
unmounted graphene type (ex. scalar or object) which is used for the type of this
field in the GraphQL schema.

	args (optional, Dict[str [https://docs.python.org/3/library/stdtypes.html#str], graphene.Argument]) – arguments that can be input to the field.
Prefer to use **extra_args.

	resolver (optional, Callable) – A function to get the value for a Field from the parent
value object. If not set, the default resolver method for the schema is used.

	source (optional, str [https://docs.python.org/3/library/stdtypes.html#str]) – attribute name to resolve for this field from the parent value
object. Alternative to resolver (cannot set both source and resolver).

	deprecation_reason (optional, str [https://docs.python.org/3/library/stdtypes.html#str]) – Setting this value indicates that the field is
depreciated and may provide instruction or reason on how for clients to proceed.

	required (optional, bool [https://docs.python.org/3/library/functions.html#bool]) – indicates this field as not null in the graphql scehma. Same behavior as
graphene.NonNull. Default False.

	name (optional, str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the GraphQL field (must be unique in a type). Defaults to attribute
name.

	description (optional, str [https://docs.python.org/3/library/stdtypes.html#str]) – the description of the GraphQL field in the schema.

	default_value (optional, Any) – Default value to resolve if none set from schema.

	**extra_args (optional, Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[graphene.Argument, graphene.UnmountedType]) – any
additional arguments to mount on the field.

	
class graphene.Argument(type, default_value=None, description=None, name=None, required=False, _creation_counter=None)[source]

	Makes an Argument available on a Field in the GraphQL schema.

Arguments will be parsed and provided to resolver methods for fields as keyword arguments.

All arg and **extra_args for a graphene.Field are implicitly mounted as Argument
using the below parameters.

from graphene import String, Boolean, Argument

age = String(
 # Boolean implicitly mounted as Argument
 dog_years=Boolean(description="convert to dog years"),
 # Boolean explicitly mounted as Argument
 decades=Argument(Boolean, default_value=False),
)

	Parameters:	
	type (class for a graphene.UnmountedType) – must be a class (not an instance) of an
unmounted graphene type (ex. scalar or object) which is used for the type of this
argument in the GraphQL schema.

	required (bool [https://docs.python.org/3/library/functions.html#bool]) – indicates this argument as not null in the graphql scehma. Same behavior
as graphene.NonNull. Default False.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the GraphQL argument. Defaults to parameter name.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – the description of the GraphQL argument in the schema.

	default_value (Any) – The value to be provided if the user does not set this argument in
the operation.

	
class graphene.InputField(type, name=None, default_value=None, deprecation_reason=None, description=None, required=False, _creation_counter=None, **extra_args)[source]

	Makes a field available on an ObjectType in the GraphQL schema. Any type can be mounted as a
Input Field except Interface and Union:

	Object Type

	Scalar Type

	Enum

Input object types also can’t have arguments on their input fields, unlike regular graphene.Field.

All class attributes of graphene.InputObjectType are implicitly mounted as InputField
using the below arguments.

from graphene import InputObjectType, String, InputField

class Person(InputObjectType):
 # implicitly mounted as Input Field
 first_name = String(required=True)
 # explicitly mounted as Input Field
 last_name = InputField(String, description="Surname")

	Parameters:	
	type (class for a graphene.UnmountedType) – Must be a class (not an instance) of an
unmounted graphene type (ex. scalar or object) which is used for the type of this
field in the GraphQL schema.

	name (optional, str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the GraphQL input field (must be unique in a type).
Defaults to attribute name.

	default_value (optional, Any) – Default value to use as input if none set in user operation (
query, mutation, etc.).

	deprecation_reason (optional, str [https://docs.python.org/3/library/stdtypes.html#str]) – Setting this value indicates that the field is
depreciated and may provide instruction or reason on how for clients to proceed.

	description (optional, str [https://docs.python.org/3/library/stdtypes.html#str]) – Description of the GraphQL field in the schema.

	required (optional, bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates this input field as not null in the graphql scehma.
Raises a validation error if argument not provided. Same behavior as graphene.NonNull.
Default False.

	**extra_args (optional, Dict) – Not used.

Fields (Unmounted Types)

	
class graphene.types.unmountedtype.UnmountedType(*args, **kwargs)[source]

	This class acts a proxy for a Graphene Type, so it can be mounted
dynamically as Field, InputField or Argument.

Instead of writing:

from graphene import ObjectType, Field, String

class MyObjectType(ObjectType):
 my_field = Field(String, description='Description here')

It lets you write:

from graphene import ObjectType, String

class MyObjectType(ObjectType):
 my_field = String(description='Description here')

It is not used directly, but is inherited by other types and streamlines their use in
different context:

	Object Type

	Scalar Type

	Enum

	Interface

	Union

An unmounted type will accept arguments based upon its context (ObjectType, Field or
InputObjectType) and pass it on to the appropriate MountedType (Field, Argument or InputField).

See each Mounted type reference for more information about valid parameters.

GraphQL Scalars

	
class graphene.Int[source]

	The Int scalar type represents non-fractional signed whole numeric
values. Int can represent values between -(2^53 - 1) and 2^53 - 1 since
represented in JSON as double-precision floating point numbers specified
by [IEEE 754](http://en.wikipedia.org/wiki/IEEE_floating_point).

	
class graphene.Float[source]

	The Float scalar type represents signed double-precision fractional
values as specified by
[IEEE 754](http://en.wikipedia.org/wiki/IEEE_floating_point).

	
class graphene.String[source]

	The String scalar type represents textual data, represented as UTF-8
character sequences. The String type is most often used by GraphQL to
represent free-form human-readable text.

	
class graphene.Boolean[source]

	The Boolean scalar type represents true or false.

	
class graphene.ID[source]

	The ID scalar type represents a unique identifier, often used to
refetch an object or as key for a cache. The ID type appears in a JSON
response as a String; however, it is not intended to be human-readable.
When expected as an input type, any string (such as “4”) or integer
(such as 4) input value will be accepted as an ID.

Graphene Scalars

	
class graphene.Date[source]

	The Date scalar type represents a Date
value as specified by
[iso8601](https://en.wikipedia.org/wiki/ISO_8601).

	
class graphene.DateTime[source]

	The DateTime scalar type represents a DateTime
value as specified by
[iso8601](https://en.wikipedia.org/wiki/ISO_8601).

	
class graphene.Time[source]

	The Time scalar type represents a Time value as
specified by
[iso8601](https://en.wikipedia.org/wiki/ISO_8601).

	
class graphene.Decimal[source]

	The Decimal scalar type represents a python Decimal.

	
class graphene.UUID[source]

	Leverages the internal Python implmeentation of UUID (uuid.UUID) to provide native UUID objects
in fields, resolvers and input.

	
class graphene.JSONString[source]

	Allows use of a JSON String for input / output from the GraphQL schema.

Use of this type is not recommended as you lose the benefits of having a defined, static
schema (one of the key benefits of GraphQL).

Enum

	
class graphene.Enum[source]

	Enum type definition

Defines a static set of values that can be provided as a Field, Argument or InputField.

from graphene import Enum

class NameFormat(Enum):
 FIRST_LAST = "first_last"
 LAST_FIRST = "last_first"

	Meta:

	enum (optional, Enum): Python enum to use as a base for GraphQL Enum.

	name (optional, str): Name of the GraphQL type (must be unique in schema). Defaults to class

	name.

	description (optional, str): Description of the GraphQL type in the schema. Defaults to class

	docstring.

	deprecation_reason (optional, str): Setting this value indicates that the enum is

	depreciated and may provide instruction or reason on how for clients to proceed.

Structures

	
class graphene.List(of_type, *args, **kwargs)[source]

	List Modifier

A list is a kind of type marker, a wrapping type which points to another
type. Lists are often created within the context of defining the fields of
an object type.

List indicates that many values will be returned (or input) for this field.

from graphene import List, String

field_name = List(String, description="There will be many values")

	
class graphene.NonNull(*args, **kwargs)[source]

	Non-Null Modifier

A non-null is a kind of type marker, a wrapping type which points to another
type. Non-null types enforce that their values are never null and can ensure
an error is raised if this ever occurs during a request. It is useful for
fields which you can make a strong guarantee on non-nullability, for example
usually the id field of a database row will never be null.

Note: the enforcement of non-nullability occurs within the executor.

NonNull can also be indicated on all Mounted types with the keyword argument required.

from graphene import NonNull, String

field_name = NonNull(String, description='This field will not be null')
another_field = String(required=True, description='This is equivalent to the above')

Type Extension

	
class graphene.Interface[source]

	Interface Type Definition

When a field can return one of a heterogeneous set of types, a Interface type
is used to describe what types are possible, what fields are in common across
all types, as well as a function to determine which type is actually used
when the field is resolved.

from graphene import Interface, String

class HasAddress(Interface):
 class Meta:
 description = "Address fields"

 address1 = String()
 address2 = String()

If a field returns an Interface Type, the ambiguous type of the object can be determined using
resolve_type on Interface and an ObjectType with Meta.possible_types or is_type_of.

	Meta:

	
	name (str): Name of the GraphQL type (must be unique in schema). Defaults to class

	name.

	description (str): Description of the GraphQL type in the schema. Defaults to class

	docstring.

	fields (Dict[str, graphene.Field]): Dictionary of field name to Field. Not recommended to

	use (prefer class attributes).

	
class graphene.Union[source]

	Union Type Definition

When a field can return one of a heterogeneous set of types, a Union type
is used to describe what types are possible as well as providing a function
to determine which type is actually used when the field is resolved.

The schema in this example can take a search text and return any of the GraphQL object types
indicated: Human, Droid or Startship.

Ambigous return types can be resolved on each ObjectType through Meta.possible_types
attribute or is_type_of method. Or by implementing resolve_type class method on the
Union.

from graphene import Union, ObjectType, List

class SearchResult(Union):
 class Meta:
 types = (Human, Droid, Starship)

class Query(ObjectType):
 search = List(SearchResult.Field(
 search_text=String(description='Value to search for'))
)

	Meta:

	
	types (Iterable[graphene.ObjectType]): Required. Collection of types that may be returned

	by this Union for the graphQL schema.

	name (optional, str): the name of the GraphQL type (must be unique in schema). Defaults to class

	name.

	description (optional, str): the description of the GraphQL type in the schema. Defaults to class

	docstring.

Execution Metadata

	
class graphene.ResolveInfo(field_name, field_asts, return_type, parent_type, schema, fragments, root_value, operation, variable_values, context, path=None)[source]

	

	
class graphene.Context(**params)[source]

	Context can be used to make a convenient container for attributes to provide
for execution for resolvers of a GraphQL operation like a query.

from graphene import Context

context = Context(loaders=build_dataloaders(), request=my_web_request)
schema.execute('{ hello(name: "world") }', context=context)

def resolve_hello(parent, info, name):
 info.context.request # value set in Context
 info.context.loaders # value set in Context
 # ...

	Parameters:	**params (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – values to make available on Context instance as attributes.

	
class graphql.execution.base.ExecutionResult(data=None, errors=None, invalid=False, extensions=None)[source]

	The result of execution. data is the result of executing the
query, errors is null if no errors occurred, and is a
non-empty array if an error occurred.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | I
 | J
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | U

A

 	
 	Argument (class in graphene)

B

 	
 	Boolean (class in graphene)

C

 	
 	Context (class in graphene)

D

 	
 	Date (class in graphene)

 	
 	DateTime (class in graphene)

 	Decimal (class in graphene)

E

 	
 	Enum (class in graphene)

 	
 	execute() (graphene.types.schema.Schema method)

 	ExecutionResult (class in graphql.execution.base)

F

 	
 	Field (class in graphene)

 	
 	Field() (graphene.Mutation class method)

 	Float (class in graphene)

I

 	
 	ID (class in graphene)

 	InputField (class in graphene)

 	
 	InputObjectType (class in graphene)

 	Int (class in graphene)

 	Interface (class in graphene)

J

 	
 	JSONString (class in graphene)

L

 	
 	List (class in graphene)

M

 	
 	Mutation (class in graphene)

N

 	
 	NonNull (class in graphene)

O

 	
 	ObjectType (class in graphene)

R

 	
 	ResolveInfo (class in graphene)

S

 	
 	Schema (class in graphene.types.schema)

 	
 	String (class in graphene)

T

 	
 	Time (class in graphene)

U

 	
 	Union (class in graphene)

 	
 	UnmountedType (class in graphene.types.unmountedtype)

 	UUID (class in graphene)

 All modules for which code is available

	graphene.types.argument

	graphene.types.context

	graphene.types.datetime

	graphene.types.decimal

	graphene.types.enum

	graphene.types.field

	graphene.types.inputfield

	graphene.types.inputobjecttype

	graphene.types.interface

	graphene.types.json

	graphene.types.mutation

	graphene.types.objecttype

	graphene.types.scalars

	graphene.types.schema

	graphene.types.structures

	graphene.types.union

	graphene.types.unmountedtype

	graphene.types.uuid

	graphql.execution.base

 Source code for graphql.execution.base

We keep the following imports to preserve compatibility
from .utils import (
 ExecutionContext,
 SubscriberExecutionContext,
 get_operation_root_type,
 collect_fields,
 should_include_node,
 does_fragment_condition_match,
 get_field_entry_key,
 default_resolve_fn,
 get_field_def,
)
from ..pyutils.ordereddict import OrderedDict
from ..error.format_error import format_error as default_format_error

Necessary for static type checking
if False: # flake8: noqa
 from typing import Any, Optional, Dict, List, Union, Callable, Type
 from ..language.ast import Field, OperationDefinition
 from ..type.definition import GraphQLList, GraphQLObjectType, GraphQLScalarType
 from ..type.schema import GraphQLSchema

[docs]class ExecutionResult(object):
 """The result of execution. `data` is the result of executing the
 query, `errors` is null if no errors occurred, and is a
 non-empty array if an error occurred."""

 __slots__ = "data", "errors", "invalid", "extensions"

 def __init__(self, data=None, errors=None, invalid=False, extensions=None):
 # type: (Optional[Dict], Optional[List[Exception]], bool, Optional[Any]) -> None
 self.data = data
 self.errors = errors
 self.extensions = extensions or dict()

 if invalid:
 assert data is None

 self.invalid = invalid

 def __eq__(self, other):
 # type: (Any) -> bool
 return self is other or (
 isinstance(other, ExecutionResult)
 and self.data == other.data
 and self.errors == other.errors
 and self.invalid == other.invalid
)

 def __str__(self):
 return str(self.to_dict())

 def to_dict(self, format_error=None, dict_class=OrderedDict):
 # type: (Optional[Callable[[Exception], Dict]], Type[Dict]) -> Dict[str, Any]
 if format_error is None:
 format_error = default_format_error

 response = dict_class()
 if self.errors:
 response["errors"] = [format_error(e) for e in self.errors]

 if not self.invalid:
 response["data"] = self.data

 return response

[docs]class ResolveInfo(object):
 __slots__ = (
 "field_name",
 "field_asts",
 "return_type",
 "parent_type",
 "schema",
 "fragments",
 "root_value",
 "operation",
 "variable_values",
 "context",
 "path",
)

 def __init__(
 self,
 field_name, # type: str
 field_asts, # type: List[Field]
 return_type, # type: Union[GraphQLList, GraphQLObjectType, GraphQLScalarType]
 parent_type, # type: GraphQLObjectType
 schema, # type: GraphQLSchema
 fragments, # type: Dict
 root_value, # type: Optional[type]
 operation, # type: OperationDefinition
 variable_values, # type: Dict
 context, # type: Optional[Any]
 path=None, # type: Union[List[Union[int, str]], List[str]]
):
 # type: (...) -> None
 self.field_name = field_name
 self.field_asts = field_asts
 self.return_type = return_type
 self.parent_type = parent_type
 self.schema = schema
 self.fragments = fragments
 self.root_value = root_value
 self.operation = operation
 self.variable_values = variable_values
 self.context = context
 self.path = path

__all__ = [
 "ExecutionResult",
 "ResolveInfo",
 "ExecutionContext",
 "SubscriberExecutionContext",
 "get_operation_root_type",
 "collect_fields",
 "should_include_node",
 "does_fragment_condition_match",
 "get_field_entry_key",
 "default_resolve_fn",
 "get_field_def",
]

 Source code for graphene.types.json

from __future__ import absolute_import

import json

from graphql.language import ast

from .scalars import Scalar

[docs]class JSONString(Scalar):
 """
 Allows use of a JSON String for input / output from the GraphQL schema.

 Use of this type is *not recommended* as you lose the benefits of having a defined, static
 schema (one of the key benefits of GraphQL).
 """

 @staticmethod
 def serialize(dt):
 return json.dumps(dt)

 @staticmethod
 def parse_literal(node):
 if isinstance(node, ast.StringValue):
 return json.loads(node.value)

 @staticmethod
 def parse_value(value):
 return json.loads(value)

 Source code for graphene.types.context

[docs]class Context(object):
 """
 Context can be used to make a convenient container for attributes to provide
 for execution for resolvers of a GraphQL operation like a query.

 .. code:: python

 from graphene import Context

 context = Context(loaders=build_dataloaders(), request=my_web_request)
 schema.execute('{ hello(name: "world") }', context=context)

 def resolve_hello(parent, info, name):
 info.context.request # value set in Context
 info.context.loaders # value set in Context
 # ...

 args:
 **params (Dict[str, Any]): values to make available on Context instance as attributes.

 """

 def __init__(self, **params):
 for key, value in params.items():
 setattr(self, key, value)

 Source code for graphene.types.schema

import inspect

from graphql import GraphQLObjectType, GraphQLSchema, graphql, is_type
from graphql.type.directives import (
 GraphQLDirective,
 GraphQLIncludeDirective,
 GraphQLSkipDirective,
)
from graphql.type.introspection import IntrospectionSchema
from graphql.utils.introspection_query import introspection_query
from graphql.utils.schema_printer import print_schema

from .definitions import GrapheneGraphQLType
from .objecttype import ObjectType
from .typemap import TypeMap, is_graphene_type

def assert_valid_root_type(_type):
 if _type is None:
 return
 is_graphene_objecttype = inspect.isclass(_type) and issubclass(_type, ObjectType)
 is_graphql_objecttype = isinstance(_type, GraphQLObjectType)
 assert is_graphene_objecttype or is_graphql_objecttype, (
 "Type {} is not a valid ObjectType."
).format(_type)

[docs]class Schema(GraphQLSchema):
 """
 Graphene Schema can execute operations (query, mutation, subscription) against the defined
 types.

 For advanced purposes, the schema can be used to lookup type definitions and answer questions
 about the types through introspection.

 Args:
 query (ObjectType): Root query *ObjectType*. Describes entry point for fields to *read*
 data in your Schema.
 mutation (ObjectType, optional): Root mutation *ObjectType*. Describes entry point for
 fields to *create, update or delete* data in your API.
 subscription (ObjectType, optional): Root subscription *ObjectType*. Describes entry point
 for fields to receive continuous updates.
 directives (List[GraphQLDirective], optional): List of custom directives to include in
 GraphQL schema. Defaults to only include directives definved by GraphQL spec (@include
 and @skip) [GraphQLIncludeDirective, GraphQLSkipDirective].
 types (List[GraphQLType], optional): List of any types to include in schema that
 may not be introspected through root types.
 auto_camelcase (bool): Fieldnames will be transformed in Schema's TypeMap from snake_case
 to camelCase (preferred by GraphQL standard). Default True.
 """

 def __init__(
 self,
 query=None,
 mutation=None,
 subscription=None,
 directives=None,
 types=None,
 auto_camelcase=True,
):
 assert_valid_root_type(query)
 assert_valid_root_type(mutation)
 assert_valid_root_type(subscription)
 self._query = query
 self._mutation = mutation
 self._subscription = subscription
 self.types = types
 self.auto_camelcase = auto_camelcase
 if directives is None:
 directives = [GraphQLIncludeDirective, GraphQLSkipDirective]

 assert all(
 isinstance(d, GraphQLDirective) for d in directives
), "Schema directives must be List[GraphQLDirective] if provided but got: {}.".format(
 directives
)
 self._directives = directives
 self.build_typemap()

 def get_query_type(self):
 return self.get_graphql_type(self._query)

 def get_mutation_type(self):
 return self.get_graphql_type(self._mutation)

 def get_subscription_type(self):
 return self.get_graphql_type(self._subscription)

 def __getattr__(self, type_name):
 """
 This function let the developer select a type in a given schema
 by accessing its attrs.

 Example: using schema.Query for accessing the "Query" type in the Schema
 """
 _type = super(Schema, self).get_type(type_name)
 if _type is None:
 raise AttributeError('Type "{}" not found in the Schema'.format(type_name))
 if isinstance(_type, GrapheneGraphQLType):
 return _type.graphene_type
 return _type

 def get_graphql_type(self, _type):
 if not _type:
 return _type
 if is_type(_type):
 return _type
 if is_graphene_type(_type):
 graphql_type = self.get_type(_type._meta.name)
 assert graphql_type, "Type {} not found in this schema.".format(
 _type._meta.name
)
 assert graphql_type.graphene_type == _type
 return graphql_type
 raise Exception("{} is not a valid GraphQL type.".format(_type))

[docs] def execute(self, *args, **kwargs):
 """
 Use the `graphql` function from `graphql-core` to provide the result for a query string.
 Most of the time this method will be called by one of the Graphene :ref:`Integrations`
 via a web request.

 Args:
 request_string (str or Document): GraphQL request (query, mutation or subscription) in
 string or parsed AST form from `graphql-core`.
 root (Any, optional): Value to use as the parent value object when resolving root
 types.
 context (Any, optional): Value to be made avaiable to all resolvers via
 `info.context`. Can be used to share authorization, dataloaders or other
 information needed to resolve an operation.
 variables (dict, optional): If variables are used in the request string, they can be
 provided in dictionary form mapping the variable name to the variable value.
 operation_name (str, optional): If mutiple operations are provided in the
 request_string, an operation name must be provided for the result to be provided.
 middleware (List[SupportsGraphQLMiddleware]): Supply request level middleware as
 defined in `graphql-core`.
 backend (GraphQLCoreBackend, optional): Override the default GraphQLCoreBackend.
 **execute_options (Any): Depends on backend selected. Default backend has several
 options such as: validate, allow_subscriptions, return_promise, executor.

 Returns:
 :obj:`ExecutionResult` containing any data and errors for the operation.
 """
 return graphql(self, *args, **kwargs)

 def introspect(self):
 instrospection = self.execute(introspection_query)
 if instrospection.errors:
 raise instrospection.errors[0]
 return instrospection.data

 def __str__(self):
 return print_schema(self)

 def lazy(self, _type):
 return lambda: self.get_type(_type)

 def build_typemap(self):
 initial_types = [
 self._query,
 self._mutation,
 self._subscription,
 IntrospectionSchema,
]
 if self.types:
 initial_types += self.types
 self._type_map = TypeMap(
 initial_types, auto_camelcase=self.auto_camelcase, schema=self
)

 Source code for graphene.types.interface

from collections import OrderedDict

from .base import BaseOptions, BaseType
from .field import Field
from .utils import yank_fields_from_attrs

For static type checking with Mypy
MYPY = False
if MYPY:
 from typing import Dict # NOQA

class InterfaceOptions(BaseOptions):
 fields = None # type: Dict[str, Field]

[docs]class Interface(BaseType):
 """
 Interface Type Definition

 When a field can return one of a heterogeneous set of types, a Interface type
 is used to describe what types are possible, what fields are in common across
 all types, as well as a function to determine which type is actually used
 when the field is resolved.

 .. code:: python

 from graphene import Interface, String

 class HasAddress(Interface):
 class Meta:
 description = "Address fields"

 address1 = String()
 address2 = String()

 If a field returns an Interface Type, the ambiguous type of the object can be determined using
 ``resolve_type`` on Interface and an ObjectType with ``Meta.possible_types`` or ``is_type_of``.

 Meta:
 name (str): Name of the GraphQL type (must be unique in schema). Defaults to class
 name.
 description (str): Description of the GraphQL type in the schema. Defaults to class
 docstring.
 fields (Dict[str, graphene.Field]): Dictionary of field name to Field. Not recommended to
 use (prefer class attributes).
 """

 @classmethod
 def __init_subclass_with_meta__(cls, _meta=None, **options):
 if not _meta:
 _meta = InterfaceOptions(cls)

 fields = OrderedDict()
 for base in reversed(cls.__mro__):
 fields.update(yank_fields_from_attrs(base.__dict__, _as=Field))

 if _meta.fields:
 _meta.fields.update(fields)
 else:
 _meta.fields = fields

 super(Interface, cls).__init_subclass_with_meta__(_meta=_meta, **options)

 @classmethod
 def resolve_type(cls, instance, info):
 from .objecttype import ObjectType

 if isinstance(instance, ObjectType):
 return type(instance)

 def __init__(self, *args, **kwargs):
 raise Exception("An Interface cannot be intitialized")

 Source code for graphene.types.uuid

from __future__ import absolute_import
import six
from uuid import UUID as _UUID

from graphql.language import ast

from .scalars import Scalar

[docs]class UUID(Scalar):
 """
 Leverages the internal Python implmeentation of UUID (uuid.UUID) to provide native UUID objects
 in fields, resolvers and input.
 """

 @staticmethod
 def serialize(uuid):
 if isinstance(uuid, six.string_types):
 uuid = _UUID(uuid)

 assert isinstance(uuid, _UUID), "Expected UUID instance, received {}".format(
 uuid
)
 return str(uuid)

 @staticmethod
 def parse_literal(node):
 if isinstance(node, ast.StringValue):
 return _UUID(node.value)

 @staticmethod
 def parse_value(value):
 return _UUID(value)

 Source code for graphene.types.inputobjecttype

from collections import OrderedDict

from .base import BaseOptions, BaseType
from .inputfield import InputField
from .unmountedtype import UnmountedType
from .utils import yank_fields_from_attrs

For static type checking with Mypy
MYPY = False
if MYPY:
 from typing import Dict, Callable # NOQA

class InputObjectTypeOptions(BaseOptions):
 fields = None # type: Dict[str, InputField]
 container = None # type: InputObjectTypeContainer

class InputObjectTypeContainer(dict, BaseType):
 class Meta:
 abstract = True

 def __init__(self, *args, **kwargs):
 dict.__init__(self, *args, **kwargs)
 for key in self._meta.fields.keys():
 setattr(self, key, self.get(key, None))

 def __init_subclass__(cls, *args, **kwargs):
 pass

[docs]class InputObjectType(UnmountedType, BaseType):
 """
 Input Object Type Definition

 An input object defines a structured collection of fields which may be
 supplied to a field argument.

 Using ``graphene.NonNull`` will ensure that a input value must be provided by the query.

 All class attributes of ``graphene.InputObjectType`` are implicitly mounted as InputField
 using the below Meta class options.

 .. code:: python

 from graphene import InputObjectType, String, InputField

 class Person(InputObjectType):
 # implicitly mounted as Input Field
 first_name = String(required=True)
 # explicitly mounted as Input Field
 last_name = InputField(String, description="Surname")

 The fields on an input object type can themselves refer to input object types, but you can't
 mix input and output types in your schema.

 Meta class options (optional):
 name (str): the name of the GraphQL type (must be unique in schema). Defaults to class
 name.
 description (str): the description of the GraphQL type in the schema. Defaults to class
 docstring.
 container (class): A class reference for a value object that allows for
 attribute initialization and access. Default InputObjectTypeContainer.
 fields (Dict[str, graphene.InputField]): Dictionary of field name to InputField. Not
 recommended to use (prefer class attributes).
 """

 @classmethod
 def __init_subclass_with_meta__(cls, container=None, _meta=None, **options):
 if not _meta:
 _meta = InputObjectTypeOptions(cls)

 fields = OrderedDict()
 for base in reversed(cls.__mro__):
 fields.update(yank_fields_from_attrs(base.__dict__, _as=InputField))

 if _meta.fields:
 _meta.fields.update(fields)
 else:
 _meta.fields = fields
 if container is None:
 container = type(cls.__name__, (InputObjectTypeContainer, cls), {})
 _meta.container = container
 super(InputObjectType, cls).__init_subclass_with_meta__(_meta=_meta, **options)

 @classmethod
 def get_type(cls):
 """
 This function is called when the unmounted type (InputObjectType instance)
 is mounted (as a Field, InputField or Argument)
 """
 return cls

 Source code for graphene.types.field

import inspect
from collections import OrderedDict

try:
 from collections.abc import Mapping
except ImportError:
 from collections import Mapping

from functools import partial

from .argument import Argument, to_arguments
from .mountedtype import MountedType
from .structures import NonNull
from .unmountedtype import UnmountedType
from .utils import get_type

base_type = type

def source_resolver(source, root, info, **args):
 resolved = getattr(root, source, None)
 if inspect.isfunction(resolved) or inspect.ismethod(resolved):
 return resolved()
 return resolved

[docs]class Field(MountedType):
 """
 Makes a field available on an ObjectType in the GraphQL schema. Any type can be mounted as a
 Field:

 - Object Type
 - Scalar Type
 - Enum
 - Interface
 - Union

 All class attributes of ``graphene.ObjectType`` are implicitly mounted as Field using the below
 arguments.

 .. code:: python

 class Person(ObjectType):
 first_name = graphene.String(required=True) # implicitly mounted as Field
 last_name = graphene.Field(String, description='Surname') # explicitly mounted as Field

 args:
 type (class for a graphene.UnmountedType): must be a class (not an instance) of an
 unmounted graphene type (ex. scalar or object) which is used for the type of this
 field in the GraphQL schema.
 args (optional, Dict[str, graphene.Argument]): arguments that can be input to the field.
 Prefer to use **extra_args.
 resolver (optional, Callable): A function to get the value for a Field from the parent
 value object. If not set, the default resolver method for the schema is used.
 source (optional, str): attribute name to resolve for this field from the parent value
 object. Alternative to resolver (cannot set both source and resolver).
 deprecation_reason (optional, str): Setting this value indicates that the field is
 depreciated and may provide instruction or reason on how for clients to proceed.
 required (optional, bool): indicates this field as not null in the graphql scehma. Same behavior as
 graphene.NonNull. Default False.
 name (optional, str): the name of the GraphQL field (must be unique in a type). Defaults to attribute
 name.
 description (optional, str): the description of the GraphQL field in the schema.
 default_value (optional, Any): Default value to resolve if none set from schema.
 **extra_args (optional, Dict[str, Union[graphene.Argument, graphene.UnmountedType]): any
 additional arguments to mount on the field.
 """

 def __init__(
 self,
 type,
 args=None,
 resolver=None,
 source=None,
 deprecation_reason=None,
 name=None,
 description=None,
 required=False,
 _creation_counter=None,
 default_value=None,
 **extra_args
):
 super(Field, self).__init__(_creation_counter=_creation_counter)
 assert not args or isinstance(args, Mapping), (
 'Arguments in a field have to be a mapping, received "{}".'
).format(args)
 assert not (
 source and resolver
), "A Field cannot have a source and a resolver in at the same time."
 assert not callable(default_value), (
 'The default value can not be a function but received "{}".'
).format(base_type(default_value))

 if required:
 type = NonNull(type)

 # Check if name is actually an argument of the field
 if isinstance(name, (Argument, UnmountedType)):
 extra_args["name"] = name
 name = None

 # Check if source is actually an argument of the field
 if isinstance(source, (Argument, UnmountedType)):
 extra_args["source"] = source
 source = None

 self.name = name
 self._type = type
 self.args = to_arguments(args or OrderedDict(), extra_args)
 if source:
 resolver = partial(source_resolver, source)
 self.resolver = resolver
 self.deprecation_reason = deprecation_reason
 self.description = description
 self.default_value = default_value

 @property
 def type(self):
 return get_type(self._type)

 def get_resolver(self, parent_resolver):
 return self.resolver or parent_resolver

 Source code for graphene.types.mutation

from collections import OrderedDict

from ..utils.deprecated import warn_deprecation
from ..utils.get_unbound_function import get_unbound_function
from ..utils.props import props
from .field import Field
from .objecttype import ObjectType, ObjectTypeOptions
from .utils import yank_fields_from_attrs
from .interface import Interface

For static type checking with Mypy
MYPY = False
if MYPY:
 from .argument import Argument # NOQA
 from typing import Dict, Type, Callable, Iterable # NOQA

class MutationOptions(ObjectTypeOptions):
 arguments = None # type: Dict[str, Argument]
 output = None # type: Type[ObjectType]
 resolver = None # type: Callable
 interfaces = () # type: Iterable[Type[Interface]]

[docs]class Mutation(ObjectType):
 """
 Object Type Definition (mutation field)

 Mutation is a convenience type that helps us build a Field which takes Arguments and returns a
 mutation Output ObjectType.

 .. code:: python

 from graphene import Mutation, ObjectType, String, Boolean, Field

 class CreatePerson(Mutation):
 class Arguments:
 name = String()

 ok = Boolean()
 person = Field(Person)

 def mutate(parent, info, name):
 person = Person(name=name)
 ok = True
 return CreatePerson(person=person, ok=ok)

 class Mutation(ObjectType):
 create_person = CreatePerson.Field()

 Meta class options (optional):
 output (graphene.ObjectType): Or ``Output`` inner class with attributes on Mutation class.
 Or attributes from Mutation class. Fields which can be returned from this mutation
 field.
 resolver (Callable resolver method): Or ``mutate`` method on Mutation class. Perform data
 change and return output.
 arguments (Dict[str, graphene.Argument]): Or ``Arguments`` inner class with attributes on
 Mutation class. Arguments to use for the mutation Field.
 name (str): Name of the GraphQL type (must be unique in schema). Defaults to class
 name.
 description (str): Description of the GraphQL type in the schema. Defaults to class
 docstring.
 interfaces (Iterable[graphene.Interface]): GraphQL interfaces to extend with the payload
 object. All fields from interface will be included in this object's schema.
 fields (Dict[str, graphene.Field]): Dictionary of field name to Field. Not recommended to
 use (prefer class attributes or ``Meta.output``).
 """

 @classmethod
 def __init_subclass_with_meta__(
 cls,
 interfaces=(),
 resolver=None,
 output=None,
 arguments=None,
 _meta=None,
 **options
):
 if not _meta:
 _meta = MutationOptions(cls)

 output = output or getattr(cls, "Output", None)
 fields = {}

 for interface in interfaces:
 assert issubclass(interface, Interface), (
 'All interfaces of {} must be a subclass of Interface. Received "{}".'
).format(cls.__name__, interface)
 fields.update(interface._meta.fields)

 if not output:
 # If output is defined, we don't need to get the fields
 fields = OrderedDict()
 for base in reversed(cls.__mro__):
 fields.update(yank_fields_from_attrs(base.__dict__, _as=Field))
 output = cls

 if not arguments:
 input_class = getattr(cls, "Arguments", None)
 if not input_class:
 input_class = getattr(cls, "Input", None)
 if input_class:
 warn_deprecation(
 (
 "Please use {name}.Arguments instead of {name}.Input."
 "Input is now only used in ClientMutationID.\n"
 "Read more:"
 " https://github.com/graphql-python/graphene/blob/v2.0.0/UPGRADE-v2.0.md#mutation-input"
).format(name=cls.__name__)
)

 if input_class:
 arguments = props(input_class)
 else:
 arguments = {}

 if not resolver:
 mutate = getattr(cls, "mutate", None)
 assert mutate, "All mutations must define a mutate method in it"
 resolver = get_unbound_function(mutate)

 if _meta.fields:
 _meta.fields.update(fields)
 else:
 _meta.fields = fields

 _meta.interfaces = interfaces
 _meta.output = output
 _meta.resolver = resolver
 _meta.arguments = arguments

 super(Mutation, cls).__init_subclass_with_meta__(_meta=_meta, **options)

 @classmethod
[docs] def Field(
 cls, name=None, description=None, deprecation_reason=None, required=False
):
 """Mount instance of mutation Field."""
 return Field(
 cls._meta.output,
 args=cls._meta.arguments,
 resolver=cls._meta.resolver,
 name=name,
 description=description or cls._meta.description,
 deprecation_reason=deprecation_reason,
 required=required,
)

 Source code for graphene.types.unmountedtype

from ..utils.orderedtype import OrderedType

[docs]class UnmountedType(OrderedType):
 """
 This class acts a proxy for a Graphene Type, so it can be mounted
 dynamically as Field, InputField or Argument.

 Instead of writing:

 .. code:: python

 from graphene import ObjectType, Field, String

 class MyObjectType(ObjectType):
 my_field = Field(String, description='Description here')

 It lets you write:

 .. code:: python

 from graphene import ObjectType, String

 class MyObjectType(ObjectType):
 my_field = String(description='Description here')

 It is not used directly, but is inherited by other types and streamlines their use in
 different context:

 - Object Type
 - Scalar Type
 - Enum
 - Interface
 - Union

 An unmounted type will accept arguments based upon its context (ObjectType, Field or
 InputObjectType) and pass it on to the appropriate MountedType (Field, Argument or InputField).

 See each Mounted type reference for more information about valid parameters.
 """

 def __init__(self, *args, **kwargs):
 super(UnmountedType, self).__init__()
 self.args = args
 self.kwargs = kwargs

 def get_type(self):
 """
 This function is called when the UnmountedType instance
 is mounted (as a Field, InputField or Argument)
 """
 raise NotImplementedError("get_type not implemented in {}".format(self))

 def mount_as(self, _as):
 return _as.mounted(self)

 def Field(self): # noqa: N802
 """
 Mount the UnmountedType as Field
 """
 from .field import Field

 return self.mount_as(Field)

 def InputField(self): # noqa: N802
 """
 Mount the UnmountedType as InputField
 """
 from .inputfield import InputField

 return self.mount_as(InputField)

 def Argument(self): # noqa: N802
 """
 Mount the UnmountedType as Argument
 """
 from .argument import Argument

 return self.mount_as(Argument)

 def __eq__(self, other):
 return self is other or (
 isinstance(other, UnmountedType)
 and self.get_type() == other.get_type()
 and self.args == other.args
 and self.kwargs == other.kwargs
)

 Source code for graphene.types.decimal

from __future__ import absolute_import

from decimal import Decimal as _Decimal

from graphql.language import ast

from .scalars import Scalar

[docs]class Decimal(Scalar):
 """
 The `Decimal` scalar type represents a python Decimal.
 """

 @staticmethod
 def serialize(dec):
 if isinstance(dec, str):
 dec = _Decimal(dec)
 assert isinstance(dec, _Decimal), 'Received not compatible Decimal "{}"'.format(
 repr(dec)
)
 return str(dec)

 @classmethod
 def parse_literal(cls, node):
 if isinstance(node, ast.StringValue):
 return cls.parse_value(node.value)

 @staticmethod
 def parse_value(value):
 try:
 return _Decimal(value)
 except ValueError:
 return None

 Source code for graphene.types.argument

from collections import OrderedDict
from itertools import chain

from .dynamic import Dynamic
from .mountedtype import MountedType
from .structures import NonNull
from .utils import get_type

[docs]class Argument(MountedType):
 """
 Makes an Argument available on a Field in the GraphQL schema.

 Arguments will be parsed and provided to resolver methods for fields as keyword arguments.

 All ``arg`` and ``**extra_args`` for a ``graphene.Field`` are implicitly mounted as Argument
 using the below parameters.

 .. code:: python

 from graphene import String, Boolean, Argument

 age = String(
 # Boolean implicitly mounted as Argument
 dog_years=Boolean(description="convert to dog years"),
 # Boolean explicitly mounted as Argument
 decades=Argument(Boolean, default_value=False),
)

 args:
 type (class for a graphene.UnmountedType): must be a class (not an instance) of an
 unmounted graphene type (ex. scalar or object) which is used for the type of this
 argument in the GraphQL schema.
 required (bool): indicates this argument as not null in the graphql scehma. Same behavior
 as graphene.NonNull. Default False.
 name (str): the name of the GraphQL argument. Defaults to parameter name.
 description (str): the description of the GraphQL argument in the schema.
 default_value (Any): The value to be provided if the user does not set this argument in
 the operation.
 """

 def __init__(
 self,
 type,
 default_value=None,
 description=None,
 name=None,
 required=False,
 _creation_counter=None,
):
 super(Argument, self).__init__(_creation_counter=_creation_counter)

 if required:
 type = NonNull(type)

 self.name = name
 self._type = type
 self.default_value = default_value
 self.description = description

 @property
 def type(self):
 return get_type(self._type)

 def __eq__(self, other):
 return isinstance(other, Argument) and (
 self.name == other.name
 and self.type == other.type
 and self.default_value == other.default_value
 and self.description == other.description
)

def to_arguments(args, extra_args=None):
 from .unmountedtype import UnmountedType
 from .field import Field
 from .inputfield import InputField

 if extra_args:
 extra_args = sorted(extra_args.items(), key=lambda f: f[1])
 else:
 extra_args = []
 iter_arguments = chain(args.items(), extra_args)
 arguments = OrderedDict()
 for default_name, arg in iter_arguments:
 if isinstance(arg, Dynamic):
 arg = arg.get_type()
 if arg is None:
 # If the Dynamic type returned None
 # then we skip the Argument
 continue

 if isinstance(arg, UnmountedType):
 arg = Argument.mounted(arg)

 if isinstance(arg, (InputField, Field)):
 raise ValueError(
 "Expected {} to be Argument, but received {}. Try using Argument({}).".format(
 default_name, type(arg).__name__, arg.type
)
)

 if not isinstance(arg, Argument):
 raise ValueError('Unknown argument "{}".'.format(default_name))

 arg_name = default_name or arg.name
 assert (
 arg_name not in arguments
), 'More than one Argument have same name "{}".'.format(arg_name)
 arguments[arg_name] = arg

 return arguments

 Source code for graphene.types.objecttype

from collections import OrderedDict

from .base import BaseOptions, BaseType
from .field import Field
from .interface import Interface
from .utils import yank_fields_from_attrs

For static type checking with Mypy
MYPY = False
if MYPY:
 from typing import Dict, Iterable, Type # NOQA

class ObjectTypeOptions(BaseOptions):
 fields = None # type: Dict[str, Field]
 interfaces = () # type: Iterable[Type[Interface]]

[docs]class ObjectType(BaseType):
 """
 Object Type Definition

 Almost all of the GraphQL types you define will be object types. Object types
 have a name, but most importantly describe their fields.

 The name of the type defined by an _ObjectType_ defaults to the class name. The type
 description defaults to the class docstring. This can be overriden by adding attributes
 to a Meta inner class.

 The class attributes of an _ObjectType_ are mounted as instances of ``graphene.Field``.

 Methods starting with ``resolve_<field_name>`` are bound as resolvers of the matching Field
 name. If no resolver is provided, the default resolver is used.

 Ambiguous types with Interface and Union can be determined through``is_type_of`` method and
 ``Meta.possible_types`` attribute.

 .. code:: python

 from graphene import ObjectType, String, Field

 class Person(ObjectType):
 class Meta:
 description = 'A human'

 # implicitly mounted as Field
 first_name = String()
 # explicitly mounted as Field
 last_name = Field(String)

 def resolve_last_name(parent, info):
 return last_name

 ObjectType must be mounted using ``graphene.Field``.

 .. code:: python

 from graphene import ObjectType, Field

 class Query(ObjectType):

 person = Field(Person, description="My favorite person")

 Meta class options (optional):
 name (str): Name of the GraphQL type (must be unique in schema). Defaults to class
 name.
 description (str): Description of the GraphQL type in the schema. Defaults to class
 docstring.
 interfaces (Iterable[graphene.Interface]): GraphQL interfaces to extend with this object.
 all fields from interface will be included in this object's schema.
 possible_types (Iterable[class]): Used to test parent value object via isintance to see if
 this type can be used to resolve an ambigous type (interface, union).
 default_resolver (any Callable resolver): Override the default resolver for this
 type. Defaults to graphene default resolver which returns an attribute or dictionary
 key with the same name as the field.
 fields (Dict[str, graphene.Field]): Dictionary of field name to Field. Not recommended to
 use (prefer class attributes).

 An _ObjectType_ can be used as a simple value object by creating an instance of the class.

 .. code:: python

 p = Person(first_name='Bob', last_name='Roberts')
 assert p.first_name == 'Bob'

 Args:
 *args (List[Any]): Positional values to use for Field values of value object
 **kwargs (Dict[str: Any]): Keyword arguments to use for Field values of value object
 """

 @classmethod
 def __init_subclass_with_meta__(
 cls,
 interfaces=(),
 possible_types=(),
 default_resolver=None,
 _meta=None,
 **options
):
 if not _meta:
 _meta = ObjectTypeOptions(cls)

 fields = OrderedDict()

 for interface in interfaces:
 assert issubclass(interface, Interface), (
 'All interfaces of {} must be a subclass of Interface. Received "{}".'
).format(cls.__name__, interface)
 fields.update(interface._meta.fields)

 for base in reversed(cls.__mro__):
 fields.update(yank_fields_from_attrs(base.__dict__, _as=Field))

 assert not (possible_types and cls.is_type_of), (
 "{name}.Meta.possible_types will cause type collision with {name}.is_type_of. "
 "Please use one or other."
).format(name=cls.__name__)

 if _meta.fields:
 _meta.fields.update(fields)
 else:
 _meta.fields = fields

 if not _meta.interfaces:
 _meta.interfaces = interfaces
 _meta.possible_types = possible_types
 _meta.default_resolver = default_resolver

 super(ObjectType, cls).__init_subclass_with_meta__(_meta=_meta, **options)

 is_type_of = None

 def __init__(self, *args, **kwargs):
 # ObjectType acting as container
 args_len = len(args)
 fields = self._meta.fields.items()
 if args_len > len(fields):
 # Daft, but matches old exception sans the err msg.
 raise IndexError("Number of args exceeds number of fields")
 fields_iter = iter(fields)

 if not kwargs:
 for val, (name, field) in zip(args, fields_iter):
 setattr(self, name, val)
 else:
 for val, (name, field) in zip(args, fields_iter):
 setattr(self, name, val)
 kwargs.pop(name, None)

 for name, field in fields_iter:
 try:
 val = kwargs.pop(
 name, field.default_value if isinstance(field, Field) else None
)
 setattr(self, name, val)
 except KeyError:
 pass

 if kwargs:
 for prop in list(kwargs):
 try:
 if isinstance(
 getattr(self.__class__, prop), property
) or prop.startswith("_"):
 setattr(self, prop, kwargs.pop(prop))
 except AttributeError:
 pass
 if kwargs:
 raise TypeError(
 "'{}' is an invalid keyword argument for {}".format(
 list(kwargs)[0], self.__class__.__name__
)
)

 Source code for graphene.types.structures

from .unmountedtype import UnmountedType
from .utils import get_type

class Structure(UnmountedType):
 """
 A structure is a GraphQL type instance that
 wraps a main type with certain structure.
 """

 def __init__(self, of_type, *args, **kwargs):
 super(Structure, self).__init__(*args, **kwargs)
 if not isinstance(of_type, Structure) and isinstance(of_type, UnmountedType):
 cls_name = type(self).__name__
 of_type_name = type(of_type).__name__
 raise Exception(
 "{} could not have a mounted {}() as inner type. Try with {}({}).".format(
 cls_name, of_type_name, cls_name, of_type_name
)
)
 self._of_type = of_type

 @property
 def of_type(self):
 return get_type(self._of_type)

 def get_type(self):
 """
 This function is called when the unmounted type (List or NonNull instance)
 is mounted (as a Field, InputField or Argument)
 """
 return self

[docs]class List(Structure):
 """
 List Modifier

 A list is a kind of type marker, a wrapping type which points to another
 type. Lists are often created within the context of defining the fields of
 an object type.

 List indicates that many values will be returned (or input) for this field.

 .. code:: python

 from graphene import List, String

 field_name = List(String, description="There will be many values")
 """

 def __str__(self):
 return "[{}]".format(self.of_type)

 def __eq__(self, other):
 return isinstance(other, List) and (
 self.of_type == other.of_type
 and self.args == other.args
 and self.kwargs == other.kwargs
)

[docs]class NonNull(Structure):
 """
 Non-Null Modifier

 A non-null is a kind of type marker, a wrapping type which points to another
 type. Non-null types enforce that their values are never null and can ensure
 an error is raised if this ever occurs during a request. It is useful for
 fields which you can make a strong guarantee on non-nullability, for example
 usually the id field of a database row will never be null.

 Note: the enforcement of non-nullability occurs within the executor.

 NonNull can also be indicated on all Mounted types with the keyword argument ``required``.

 .. code:: python

 from graphene import NonNull, String

 field_name = NonNull(String, description='This field will not be null')
 another_field = String(required=True, description='This is equivalent to the above')

 """

 def __init__(self, *args, **kwargs):
 super(NonNull, self).__init__(*args, **kwargs)
 assert not isinstance(self._of_type, NonNull), (
 "Can only create NonNull of a Nullable GraphQLType but got: {}."
).format(self._of_type)

 def __str__(self):
 return "{}!".format(self.of_type)

 def __eq__(self, other):
 return isinstance(other, NonNull) and (
 self.of_type == other.of_type
 and self.args == other.args
 and self.kwargs == other.kwargs
)

 Source code for graphene.types.inputfield

from .mountedtype import MountedType
from .structures import NonNull
from .utils import get_type

[docs]class InputField(MountedType):
 """
 Makes a field available on an ObjectType in the GraphQL schema. Any type can be mounted as a
 Input Field except Interface and Union:

 - Object Type
 - Scalar Type
 - Enum

 Input object types also can't have arguments on their input fields, unlike regular ``graphene.Field``.

 All class attributes of ``graphene.InputObjectType`` are implicitly mounted as InputField
 using the below arguments.

 .. code:: python

 from graphene import InputObjectType, String, InputField

 class Person(InputObjectType):
 # implicitly mounted as Input Field
 first_name = String(required=True)
 # explicitly mounted as Input Field
 last_name = InputField(String, description="Surname")

 args:
 type (class for a graphene.UnmountedType): Must be a class (not an instance) of an
 unmounted graphene type (ex. scalar or object) which is used for the type of this
 field in the GraphQL schema.
 name (optional, str): Name of the GraphQL input field (must be unique in a type).
 Defaults to attribute name.
 default_value (optional, Any): Default value to use as input if none set in user operation (
 query, mutation, etc.).
 deprecation_reason (optional, str): Setting this value indicates that the field is
 depreciated and may provide instruction or reason on how for clients to proceed.
 description (optional, str): Description of the GraphQL field in the schema.
 required (optional, bool): Indicates this input field as not null in the graphql scehma.
 Raises a validation error if argument not provided. Same behavior as graphene.NonNull.
 Default False.
 **extra_args (optional, Dict): Not used.
 """

 def __init__(
 self,
 type,
 name=None,
 default_value=None,
 deprecation_reason=None,
 description=None,
 required=False,
 _creation_counter=None,
 **extra_args
):
 super(InputField, self).__init__(_creation_counter=_creation_counter)
 self.name = name
 if required:
 type = NonNull(type)
 self._type = type
 self.deprecation_reason = deprecation_reason
 self.default_value = default_value
 self.description = description

 @property
 def type(self):
 return get_type(self._type)

 Source code for graphene.types.union

from .base import BaseOptions, BaseType
from .unmountedtype import UnmountedType

For static type checking with Mypy
MYPY = False
if MYPY:
 from .objecttype import ObjectType # NOQA
 from typing import Iterable, Type # NOQA

class UnionOptions(BaseOptions):
 types = () # type: Iterable[Type[ObjectType]]

[docs]class Union(UnmountedType, BaseType):
 """
 Union Type Definition

 When a field can return one of a heterogeneous set of types, a Union type
 is used to describe what types are possible as well as providing a function
 to determine which type is actually used when the field is resolved.

 The schema in this example can take a search text and return any of the GraphQL object types
 indicated: Human, Droid or Startship.

 Ambigous return types can be resolved on each ObjectType through ``Meta.possible_types``
 attribute or ``is_type_of`` method. Or by implementing ``resolve_type`` class method on the
 Union.

 .. code:: python

 from graphene import Union, ObjectType, List

 class SearchResult(Union):
 class Meta:
 types = (Human, Droid, Starship)

 class Query(ObjectType):
 search = List(SearchResult.Field(
 search_text=String(description='Value to search for'))
)

 Meta:
 types (Iterable[graphene.ObjectType]): Required. Collection of types that may be returned
 by this Union for the graphQL schema.
 name (optional, str): the name of the GraphQL type (must be unique in schema). Defaults to class
 name.
 description (optional, str): the description of the GraphQL type in the schema. Defaults to class
 docstring.
 """

 @classmethod
 def __init_subclass_with_meta__(cls, types=None, **options):
 assert (
 isinstance(types, (list, tuple)) and len(types) > 0
), "Must provide types for Union {name}.".format(name=cls.__name__)

 _meta = UnionOptions(cls)
 _meta.types = types
 super(Union, cls).__init_subclass_with_meta__(_meta=_meta, **options)

 @classmethod
 def get_type(cls):
 """
 This function is called when the unmounted type (Union instance)
 is mounted (as a Field, InputField or Argument)
 """
 return cls

 @classmethod
 def resolve_type(cls, instance, info):
 from .objecttype import ObjectType # NOQA

 if isinstance(instance, ObjectType):
 return type(instance)

 Source code for graphene.types.scalars

import six
from graphql.language.ast import BooleanValue, FloatValue, IntValue, StringValue

from .base import BaseOptions, BaseType
from .unmountedtype import UnmountedType

if six.PY3:
 from typing import Any

class ScalarOptions(BaseOptions):
 pass

class Scalar(UnmountedType, BaseType):
 """
 Scalar Type Definition

 The leaf values of any request and input values to arguments are
 Scalars (or Enums) and are defined with a name and a series of functions
 used to parse input from ast or variables and to ensure validity.
 """

 @classmethod
 def __init_subclass_with_meta__(cls, **options):
 _meta = ScalarOptions(cls)
 super(Scalar, cls).__init_subclass_with_meta__(_meta=_meta, **options)

 serialize = None
 parse_value = None
 parse_literal = None

 @classmethod
 def get_type(cls):
 """
 This function is called when the unmounted type (Scalar instance)
 is mounted (as a Field, InputField or Argument)
 """
 return cls

As per the GraphQL Spec, Integers are only treated as valid when a valid
32-bit signed integer, providing the broadest support across platforms.
#
n.b. JavaScript's integers are safe between -(2^53 - 1) and 2^53 - 1 because
they are internally represented as IEEE 754 doubles.
MAX_INT = 2147483647
MIN_INT = -2147483648

[docs]class Int(Scalar):
 """
 The `Int` scalar type represents non-fractional signed whole numeric
 values. Int can represent values between -(2^53 - 1) and 2^53 - 1 since
 represented in JSON as double-precision floating point numbers specified
 by [IEEE 754](http://en.wikipedia.org/wiki/IEEE_floating_point).
 """

 @staticmethod
 def coerce_int(value):
 try:
 num = int(value)
 except ValueError:
 try:
 num = int(float(value))
 except ValueError:
 return None
 if MIN_INT <= num <= MAX_INT:
 return num

 serialize = coerce_int
 parse_value = coerce_int

 @staticmethod
 def parse_literal(ast):
 if isinstance(ast, IntValue):
 num = int(ast.value)
 if MIN_INT <= num <= MAX_INT:
 return num

[docs]class Float(Scalar):
 """
 The `Float` scalar type represents signed double-precision fractional
 values as specified by
 [IEEE 754](http://en.wikipedia.org/wiki/IEEE_floating_point).
 """

 @staticmethod
 def coerce_float(value):
 # type: (Any) -> float
 try:
 return float(value)
 except ValueError:
 return None

 serialize = coerce_float
 parse_value = coerce_float

 @staticmethod
 def parse_literal(ast):
 if isinstance(ast, (FloatValue, IntValue)):
 return float(ast.value)

[docs]class String(Scalar):
 """
 The `String` scalar type represents textual data, represented as UTF-8
 character sequences. The String type is most often used by GraphQL to
 represent free-form human-readable text.
 """

 @staticmethod
 def coerce_string(value):
 if isinstance(value, bool):
 return u"true" if value else u"false"
 return six.text_type(value)

 serialize = coerce_string
 parse_value = coerce_string

 @staticmethod
 def parse_literal(ast):
 if isinstance(ast, StringValue):
 return ast.value

[docs]class Boolean(Scalar):
 """
 The `Boolean` scalar type represents `true` or `false`.
 """

 serialize = bool
 parse_value = bool

 @staticmethod
 def parse_literal(ast):
 if isinstance(ast, BooleanValue):
 return ast.value

[docs]class ID(Scalar):
 """
 The `ID` scalar type represents a unique identifier, often used to
 refetch an object or as key for a cache. The ID type appears in a JSON
 response as a String; however, it is not intended to be human-readable.
 When expected as an input type, any string (such as `"4"`) or integer
 (such as `4`) input value will be accepted as an ID.
 """

 serialize = str
 parse_value = str

 @staticmethod
 def parse_literal(ast):
 if isinstance(ast, (StringValue, IntValue)):
 return ast.value

 Source code for graphene.types.datetime

from __future__ import absolute_import

import datetime

from aniso8601 import parse_date, parse_datetime, parse_time
from graphql.language import ast
from six import string_types

from .scalars import Scalar

[docs]class Date(Scalar):
 """
 The `Date` scalar type represents a Date
 value as specified by
 [iso8601](https://en.wikipedia.org/wiki/ISO_8601).
 """

 @staticmethod
 def serialize(date):
 if isinstance(date, datetime.datetime):
 date = date.date()
 assert isinstance(
 date, datetime.date
), 'Received not compatible date "{}"'.format(repr(date))
 return date.isoformat()

 @classmethod
 def parse_literal(cls, node):
 if isinstance(node, ast.StringValue):
 return cls.parse_value(node.value)

 @staticmethod
 def parse_value(value):
 try:
 if isinstance(value, datetime.date):
 return value
 elif isinstance(value, string_types):
 return parse_date(value)
 except ValueError:
 return None

[docs]class DateTime(Scalar):
 """
 The `DateTime` scalar type represents a DateTime
 value as specified by
 [iso8601](https://en.wikipedia.org/wiki/ISO_8601).
 """

 @staticmethod
 def serialize(dt):
 assert isinstance(
 dt, (datetime.datetime, datetime.date)
), 'Received not compatible datetime "{}"'.format(repr(dt))
 return dt.isoformat()

 @classmethod
 def parse_literal(cls, node):
 if isinstance(node, ast.StringValue):
 return cls.parse_value(node.value)

 @staticmethod
 def parse_value(value):
 try:
 if isinstance(value, datetime.datetime):
 return value
 elif isinstance(value, string_types):
 return parse_datetime(value)
 except ValueError:
 return None

[docs]class Time(Scalar):
 """
 The `Time` scalar type represents a Time value as
 specified by
 [iso8601](https://en.wikipedia.org/wiki/ISO_8601).
 """

 @staticmethod
 def serialize(time):
 assert isinstance(
 time, datetime.time
), 'Received not compatible time "{}"'.format(repr(time))
 return time.isoformat()

 @classmethod
 def parse_literal(cls, node):
 if isinstance(node, ast.StringValue):
 return cls.parse_value(node.value)

 @classmethod
 def parse_value(cls, value):
 try:
 if isinstance(value, datetime.time):
 return value
 elif isinstance(value, string_types):
 return parse_time(value)
 except ValueError:
 return None

 Source code for graphene.types.enum

from collections import OrderedDict

import six

from graphene.utils.subclass_with_meta import SubclassWithMeta_Meta

from ..pyutils.compat import Enum as PyEnum
from .base import BaseOptions, BaseType
from .unmountedtype import UnmountedType

def eq_enum(self, other):
 if isinstance(other, self.__class__):
 return self is other
 return self.value is other

EnumType = type(PyEnum)

class EnumOptions(BaseOptions):
 enum = None # type: Enum
 deprecation_reason = None

class EnumMeta(SubclassWithMeta_Meta):
 def __new__(cls, name, bases, classdict, **options):
 enum_members = OrderedDict(classdict, __eq__=eq_enum)
 # We remove the Meta attribute from the class to not collide
 # with the enum values.
 enum_members.pop("Meta", None)
 enum = PyEnum(cls.__name__, enum_members)
 return SubclassWithMeta_Meta.__new__(
 cls, name, bases, OrderedDict(classdict, __enum__=enum), **options
)

 def get(cls, value):
 return cls._meta.enum(value)

 def __getitem__(cls, value):
 return cls._meta.enum[value]

 def __prepare__(name, bases, **kwargs): # noqa: N805
 return OrderedDict()

 def __call__(cls, *args, **kwargs): # noqa: N805
 if cls is Enum:
 description = kwargs.pop("description", None)
 deprecation_reason = kwargs.pop("deprecation_reason", None)
 return cls.from_enum(
 PyEnum(*args, **kwargs),
 description=description,
 deprecation_reason=deprecation_reason,
)
 return super(EnumMeta, cls).__call__(*args, **kwargs)
 # return cls._meta.enum(*args, **kwargs)

 def from_enum(cls, enum, description=None, deprecation_reason=None): # noqa: N805
 description = description or enum.__doc__
 meta_dict = {
 "enum": enum,
 "description": description,
 "deprecation_reason": deprecation_reason,
 }
 meta_class = type("Meta", (object,), meta_dict)
 return type(meta_class.enum.__name__, (Enum,), {"Meta": meta_class})

[docs]class Enum(six.with_metaclass(EnumMeta, UnmountedType, BaseType)):
 """
 Enum type definition

 Defines a static set of values that can be provided as a Field, Argument or InputField.

 .. code:: python

 from graphene import Enum

 class NameFormat(Enum):
 FIRST_LAST = "first_last"
 LAST_FIRST = "last_first"

 Meta:
 enum (optional, Enum): Python enum to use as a base for GraphQL Enum.

 name (optional, str): Name of the GraphQL type (must be unique in schema). Defaults to class
 name.
 description (optional, str): Description of the GraphQL type in the schema. Defaults to class
 docstring.
 deprecation_reason (optional, str): Setting this value indicates that the enum is
 depreciated and may provide instruction or reason on how for clients to proceed.
 """

 @classmethod
 def __init_subclass_with_meta__(cls, enum=None, _meta=None, **options):
 if not _meta:
 _meta = EnumOptions(cls)
 _meta.enum = enum or cls.__enum__
 _meta.deprecation_reason = options.pop("deprecation_reason", None)
 for key, value in _meta.enum.__members__.items():
 setattr(cls, key, value)

 super(Enum, cls).__init_subclass_with_meta__(_meta=_meta, **options)

 @classmethod
 def get_type(cls):
 """
 This function is called when the unmounted type (Enum instance)
 is mounted (as a Field, InputField or Argument)
 """
 return cls

 _static/comment.png

_static/file.png

_static/plus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment-bright.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Graphene

 		Getting started

 		Introduction

 		What is GraphQL?

 		What is Graphene?

 		An example in Graphene

 		Requirements

 		Project setup

 		Creating a basic Schema

 		Schema Definition Language (SDL)

 		Querying

 		Next steps

 		Types Reference

 		Schema

 		Querying

 		Types

 		Auto CamelCase field names

 		Scalars

 		Base scalars

 		Custom scalars

 		Mounting Scalars

 		Lists and Non-Null

 		NonNull

 		List

 		NonNull Lists

 		ObjectType

 		Quick example

 		Resolvers

 		ObjectType Configuration - Meta class

 		Enums

 		Definition

 		Value descriptions

 		Usage with Python Enums

 		Notes

 		Interfaces

 		Resolving data objects to types

 		Unions

 		Quick example

 		Mutations

 		Quick example

 		Executing the Mutation

 		InputFields and InputObjectTypes

 		Output type example

 		AbstractTypes

 		Quick example

 		Execution

 		Executing a query

 		Context

 		Variables

 		Root Value

 		Operation Name

 		Middleware

 		Resolve arguments

 		Example

 		Functional example

 		Dataloader

 		Batching

 		Using with Graphene

 		Relay

 		Nodes

 		Quick example

 		Custom Nodes

 		Accessing node types

 		Node Root field

 		Connection

 		Quick example

 		Connection Field

 		Mutations

 		Accepting Files

 		Useful links

 		Testing in Graphene

 		Testing tools

 		Test Client

 		Overview and a quick example

 		Execute parameters

 		Snapshot testing

 		API Reference

 		Schema

 		Object types

 		Fields (Mounted Types)

 		Fields (Unmounted Types)

 		GraphQL Scalars

 		Graphene Scalars

 		Enum

 		Structures

 		Type Extension

 		Execution Metadata

_static/minus.png

