
Graphene Documentation
Release 1.0.dev

Syrus Akbary

May 14, 2023

Contents

1 Getting Started 3
1.1 Installation . 3
1.2 Examples . 3

2 Inheritance Examples 7
2.1 Create interfaces from inheritance relationships . 7
2.2 Eager Loading & Using with AsyncSession . 9

3 Relay 11

4 Tips 13
4.1 Querying . 13
4.2 Sorting . 13

5 Schema Examples 15
5.1 Search all Models with Union . 15

6 SQLAlchemy + Flask Tutorial 17
6.1 Setup the Project . 17
6.2 Defining our models . 17
6.3 Schema . 18
6.4 Creating GraphQL and GraphiQL views in Flask . 19
6.5 Creating some data . 20
6.6 Testing our GraphQL schema . 20

7 API Reference 21
7.1 SQLAlchemyObjectType . 21
7.2 SQLAlchemyInterface . 21
7.3 ORMField . 21
7.4 SQLAlchemyConnectionField . 21

i

ii

Graphene Documentation, Release 1.0.dev

Contents:

Contents 1

Graphene Documentation, Release 1.0.dev

2 Contents

CHAPTER 1

Getting Started

Welcome to the graphene-sqlalchemy documentation! Graphene is a powerful Python library for building GraphQL
APIs, and SQLAlchemy is a popular ORM (Object-Relational Mapping) tool for working with databases. When com-
bined, graphene-sqlalchemy allows developers to quickly and easily create a GraphQL API that seamlessly interacts
with a SQLAlchemy-managed database. It is fully compatible with SQLAlchemy 1.4 and 2.0. This documentation
provides detailed instructions on how to get started with graphene-sqlalchemy, including installation, setup, and usage
examples.

1.1 Installation

To install graphene-sqlalchemy, just run this command in your shell:

pip install --pre "graphene-sqlalchemy"

1.2 Examples

Here is a simple SQLAlchemy model:

from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class UserModel(Base):
__tablename__ = 'user'
id = Column(Integer, primary_key=True)
name = Column(String)
last_name = Column(String)

To create a GraphQL schema for it, you simply have to write the following:

3

Graphene Documentation, Release 1.0.dev

import graphene
from graphene_sqlalchemy import SQLAlchemyObjectType

class User(SQLAlchemyObjectType):
class Meta:

model = UserModel
use `only_fields` to only expose specific fields ie "name"
only_fields = ("name",)
use `exclude_fields` to exclude specific fields ie "last_name"
exclude_fields = ("last_name",)

class Query(graphene.ObjectType):
users = graphene.List(User)

def resolve_users(self, info):
query = User.get_query(info) # SQLAlchemy query
return query.all()

schema = graphene.Schema(query=Query)

Then you can simply query the schema:

query = '''
query {

users {
name,
lastName

}
}

'''
result = schema.execute(query, context_value={'session': db_session})

It is important to provide a session for graphene-sqlalchemy to resolve the models. In this example, it is provided
using the GraphQL context. See Tips for other ways to implement this.

You may also subclass SQLAlchemyObjectType by providing abstract = True in your subclasses Meta:

from graphene_sqlalchemy import SQLAlchemyObjectType

class ActiveSQLAlchemyObjectType(SQLAlchemyObjectType):
class Meta:

abstract = True

@classmethod
def get_node(cls, info, id):

return cls.get_query(info).filter(
and_(cls._meta.model.deleted_at==None,

cls._meta.model.id==id)
).first()

class User(ActiveSQLAlchemyObjectType):
class Meta:

model = UserModel

class Query(graphene.ObjectType):
users = graphene.List(User)

def resolve_users(self, info):
(continues on next page)

4 Chapter 1. Getting Started

Graphene Documentation, Release 1.0.dev

(continued from previous page)

query = User.get_query(info) # SQLAlchemy query
return query.all()

schema = graphene.Schema(query=Query)

More complex inhertiance using SQLAlchemy’s polymorphic models is also supported. You can check out Inheritance
Examples for a guide.

1.2. Examples 5

Graphene Documentation, Release 1.0.dev

6 Chapter 1. Getting Started

CHAPTER 2

Inheritance Examples

2.1 Create interfaces from inheritance relationships

Note: If you’re using AsyncSession, please check the chapter Eager Loading & Using with AsyncSession.

SQLAlchemy has excellent support for class inheritance hierarchies. These hierarchies can be represented in your
GraphQL schema by means of interfaces. Much like ObjectTypes, Interfaces in Graphene-SQLAlchemy are able to
infer their fields and relationships from the attributes of their underlying SQLAlchemy model:

from sqlalchemy import Column, Date, Integer, String
from sqlalchemy.ext.declarative import declarative_base

import graphene
from graphene import relay
from graphene_sqlalchemy import SQLAlchemyInterface, SQLAlchemyObjectType

Base = declarative_base()

class Person(Base):
id = Column(Integer(), primary_key=True)
type = Column(String())
name = Column(String())
birth_date = Column(Date())

__tablename__ = "person"
__mapper_args__ = {

"polymorphic_on": type,
}

class Employee(Person):
hire_date = Column(Date())

(continues on next page)

7

https://docs.graphene-python.org/en/latest/types/interfaces/

Graphene Documentation, Release 1.0.dev

(continued from previous page)

__mapper_args__ = {
"polymorphic_identity": "employee",

}

class Customer(Person):
first_purchase_date = Column(Date())

__mapper_args__ = {
"polymorphic_identity": "customer",

}

class PersonType(SQLAlchemyInterface):
class Meta:

model = Person

class EmployeeType(SQLAlchemyObjectType):
class Meta:

model = Employee
interfaces = (relay.Node, PersonType)

class CustomerType(SQLAlchemyObjectType):
class Meta:

model = Customer
interfaces = (relay.Node, PersonType)

Keep in mind that PersonType is a SQLAlchemyInterface. Interfaces must be linked to an abstract Model that does not
specify a polymorphic_identity, because we cannot return instances of interfaces from a GraphQL query. If Person
specified a polymorphic_identity, instances of Person could be inserted into and returned by the database, potentially
causing Persons to be returned to the resolvers.

When querying on the base type, you can refer directly to common fields, and fields on concrete implementations
using the . . . on syntax:

people {
name
birthDate
... on EmployeeType {

hireDate
}
... on CustomerType {

firstPurchaseDate
}

}

Danger: When using joined table inheritance, this style of querying may lead to unbatched implicit IO with neg-
ative performance implications. See the chapter Eager Loading & Using with AsyncSession for more information
on eager loading all possible types of a SQLAlchemyInterface.

Please note that by default, the “polymorphic_on” column is not generated as a field on types that use polymorphic
inheritance, as this is considered an implementation detail. The idiomatic way to retrieve the concrete GraphQL type
of an object is to query for the __typename field. To override this behavior, an ORMField needs to be created for
the custom type field on the corresponding SQLAlchemyInterface. This is not recommended as it promotes abiguous
schema design

If your SQLAlchemy model only specifies a relationship to the base type, you will need to explicitly pass your concrete

8 Chapter 2. Inheritance Examples

Graphene Documentation, Release 1.0.dev

implementation class to the Schema constructor via the types= argument:

schema = graphene.Schema(..., types=[PersonType, EmployeeType, CustomerType])

See also: Graphene Interfaces

2.2 Eager Loading & Using with AsyncSession

When querying the base type in multi-table inheritance or joined table inheritance, you can only directly refer to
polymorphic fields when they are loaded eagerly. This restricting is in place because AsyncSessions don’t allow
implicit async operations such as the loads of the joined tables. To load the polymorphic fields eagerly, you can use
the with_polymorphic attribute of the mapper args in the base model:

class Person(Base):
id = Column(Integer(), primary_key=True)
type = Column(String())
name = Column(String())
birth_date = Column(Date())

__tablename__ = "person"
__mapper_args__ = {

"polymorphic_on": type,
"with_polymorphic": "*", # needed for eager loading in async session

}

Alternatively, the specific polymorphic fields can be loaded explicitly in resolvers:

class Query(graphene.ObjectType):
people = graphene.Field(graphene.List(PersonType))

async def resolve_people(self, _info):
return (await session.scalars(with_polymorphic(Person, [Engineer,

→˓Customer]))).all()

Dynamic batching of the types based on the query to avoid eager is currently not supported, but could be implemented
in a future PR.

For more information on loading techniques for polymorphic models, please check out the SQLAlchemy docs.

2.2. Eager Loading & Using with AsyncSession 9

https://docs.graphene-python.org/en/latest/types/interfaces/
https://docs.sqlalchemy.org/en/20/orm/queryguide/inheritance.html

Graphene Documentation, Release 1.0.dev

10 Chapter 2. Inheritance Examples

CHAPTER 3

Relay

graphene-sqlalchemy comes with pre-defined connection fields to quickly create a functioning relay API. Using
the SQLAlchemyConnectionField, you have access to relay pagination, sorting and filtering (filtering is coming
soon!).

To be used in a relay connection, your SQLAlchemyObjectType must implement the Node interface from
graphene.relay. This handles the creation of the Connection and Edge types automatically.

The following example creates a relay-paginated connection:

class Pet(Base):
__tablename__ = 'pets'
id = Column(Integer(), primary_key=True)
name = Column(String(30))
pet_kind = Column(Enum('cat', 'dog', name='pet_kind'), nullable=False)

class PetNode(SQLAlchemyObjectType):
class Meta:

model = Pet
interfaces=(Node,)

class Query(ObjectType):
all_pets = SQLAlchemyConnectionField(PetNode.connection)

To disable sorting on the connection, you can set sort to None the SQLAlchemyConnectionField:

class Query(ObjectType):
all_pets = SQLAlchemyConnectionField(PetNode.connection, sort=None)

11

Graphene Documentation, Release 1.0.dev

12 Chapter 3. Relay

CHAPTER 4

Tips

4.1 Querying

In order to make querying against the database work, there are two alternatives:

• Set the db session when you do the execution:

schema = graphene.Schema()
schema.execute(context_value={'session': session})

• Create a query for the models.

Base = declarative_base()
Base.query = db_session.query_property()

class MyModel(Base):
...

If you don’t specify any, the following error will be displayed:

A query in the model Base or a session in the schema is required for querying.

4.2 Sorting

By default the SQLAlchemyConnectionField sorts the result elements over the primary key(s). The query has a sort
argument which allows to sort over a different column(s)

Given the model

class Pet(Base):
__tablename__ = 'pets'
id = Column(Integer(), primary_key=True)
name = Column(String(30))

(continues on next page)

13

Graphene Documentation, Release 1.0.dev

(continued from previous page)

pet_kind = Column(Enum('cat', 'dog', name='pet_kind'), nullable=False)

class PetNode(SQLAlchemyObjectType):
class Meta:

model = Pet

class Query(ObjectType):
allPets = SQLAlchemyConnectionField(PetNode.connection)

some of the allowed queries are

• Sort in ascending order over the name column

allPets(sort: name_asc){
edges {

node {
name

}
}

}

• Sort in descending order over the per_kind column and in ascending order over the name column

allPets(sort: [pet_kind_desc, name_asc]) {
edges {

node {
name
petKind

}
}

}

14 Chapter 4. Tips

CHAPTER 5

Schema Examples

5.1 Search all Models with Union

class Book(SQLAlchemyObjectType):
class Meta:

model = BookModel
interfaces = (relay.Node,)

class Author(SQLAlchemyObjectType):
class Meta:

model = AuthorModel
interfaces = (relay.Node,)

class SearchResult(graphene.Union):
class Meta:

types = (Book, Author)

class Query(graphene.ObjectType):
node = relay.Node.Field()
search = graphene.List(SearchResult, q=graphene.String()) # List field for

→˓search results

Normal Fields
all_books = SQLAlchemyConnectionField(Book.connection)
all_authors = SQLAlchemyConnectionField(Author.connection)

def resolve_search(self, info, **args):
q = args.get("q") # Search query

Get queries
bookdata_query = BookData.get_query(info)

(continues on next page)

15

Graphene Documentation, Release 1.0.dev

(continued from previous page)

author_query = Author.get_query(info)

Query Books
books = bookdata_query.filter((BookModel.title.contains(q)) |

(BookModel.isbn.contains(q)) |
(BookModel.authors.any(AuthorModel.name.

→˓contains(q)))).all()

Query Authors
authors = author_query.filter(AuthorModel.name.contains(q)).all()

return authors + books # Combine lists

schema = graphene.Schema(query=Query, types=[Book, Author, SearchResult])

Example GraphQL query

book(id: "Qm9vazow") {
id
title

}
search(q: "Making Games") {

__typename
... on Author {

fname
lname

}
... on Book {

title
isbn

}
}

16 Chapter 5. Schema Examples

CHAPTER 6

SQLAlchemy + Flask Tutorial

Graphene comes with builtin support to SQLAlchemy, which makes quite easy to operate with your current models.

Note: The code in this tutorial is pulled from the Flask SQLAlchemy example app.

6.1 Setup the Project

We will setup the project, execute the following:

Create the project directory
mkdir flask_sqlalchemy
cd flask_sqlalchemy

Create a virtualenv to isolate our package dependencies locally
virtualenv env
source env/bin/activate # On Windows use `env\Scripts\activate`

SQLAlchemy and Graphene with SQLAlchemy support
pip install SQLAlchemy
pip install graphene_sqlalchemy

Install Flask and GraphQL Flask for exposing the schema through HTTP
pip install Flask
pip install Flask-GraphQL

6.2 Defining our models

Let’s get started with these models:

17

https://github.com/graphql-python/graphene-sqlalchemy/tree/master/examples/flask_sqlalchemy

Graphene Documentation, Release 1.0.dev

flask_sqlalchemy/models.py
from sqlalchemy import *
from sqlalchemy.orm import (scoped_session, sessionmaker, relationship,

backref)
from sqlalchemy.ext.declarative import declarative_base

engine = create_engine('sqlite:///database.sqlite3', convert_unicode=True)
db_session = scoped_session(sessionmaker(autocommit=False,

autoflush=False,
bind=engine))

Base = declarative_base()
We will need this for querying
Base.query = db_session.query_property()

class Department(Base):
__tablename__ = 'department'
id = Column(Integer, primary_key=True)
name = Column(String)

class Employee(Base):
__tablename__ = 'employee'
id = Column(Integer, primary_key=True)
name = Column(String)
hired_on = Column(DateTime, default=func.now())
department_id = Column(Integer, ForeignKey('department.id'))
department = relationship(

Department,
backref=backref('employees',

uselist=True,
cascade='delete,all'))

6.3 Schema

GraphQL presents your objects to the world as a graph structure rather than a more hierarchical structure to which you
may be accustomed. In order to create this representation, Graphene needs to know about each type of object which
will appear in the graph.

This graph also has a root type through which all access begins. This is the Query class below. In this example, we
provide the ability to list all employees via all_employees, and the ability to obtain a specific node via node.

Create flask_sqlalchemy/schema.py and type the following:

flask_sqlalchemy/schema.py
import graphene
from graphene import relay
from graphene_sqlalchemy import SQLAlchemyObjectType, SQLAlchemyConnectionField
from .models import db_session, Department as DepartmentModel, Employee as
→˓EmployeeModel

class Department(SQLAlchemyObjectType):
class Meta:

(continues on next page)

18 Chapter 6. SQLAlchemy + Flask Tutorial

Graphene Documentation, Release 1.0.dev

(continued from previous page)

model = DepartmentModel
interfaces = (relay.Node,)

class Employee(SQLAlchemyObjectType):
class Meta:

model = EmployeeModel
interfaces = (relay.Node,)

class Query(graphene.ObjectType):
node = relay.Node.Field()
Allows sorting over multiple columns, by default over the primary key
all_employees = SQLAlchemyConnectionField(Employee.connection)
Disable sorting over this field
all_departments = SQLAlchemyConnectionField(Department.connection, sort=None)

schema = graphene.Schema(query=Query)

6.4 Creating GraphQL and GraphiQL views in Flask

Unlike a RESTful API, there is only a single URL from which GraphQL is accessed.

We are going to use Flask to create a server that expose the GraphQL schema under /graphql and a interface for
querying it easily: GraphiQL (also under /graphql when accessed by a browser).

Fortunately for us, the library Flask-GraphQL that we previously installed makes this task quite easy.

flask_sqlalchemy/app.py
from flask import Flask
from flask_graphql import GraphQLView

from .models import db_session
from .schema import schema, Department

app = Flask(__name__)
app.debug = True

app.add_url_rule(
'/graphql',
view_func=GraphQLView.as_view(

'graphql',
schema=schema,
graphiql=True # for having the GraphiQL interface

)
)

@app.teardown_appcontext
def shutdown_session(exception=None):

db_session.remove()

if __name__ == '__main__':
app.run()

6.4. Creating GraphQL and GraphiQL views in Flask 19

Graphene Documentation, Release 1.0.dev

6.5 Creating some data

$ python

>>> from .models import engine, db_session, Base, Department, Employee
>>> Base.metadata.create_all(bind=engine)

>>> # Fill the tables with some data
>>> engineering = Department(name='Engineering')
>>> db_session.add(engineering)
>>> hr = Department(name='Human Resources')
>>> db_session.add(hr)

>>> peter = Employee(name='Peter', department=engineering)
>>> db_session.add(peter)
>>> roy = Employee(name='Roy', department=engineering)
>>> db_session.add(roy)
>>> tracy = Employee(name='Tracy', department=hr)
>>> db_session.add(tracy)
>>> db_session.commit()

6.6 Testing our GraphQL schema

We’re now ready to test the API we’ve built. Let’s fire up the server from the command line.

$ python ./app.py

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Go to localhost:5000/graphql and type your first query!

{
allEmployees {
edges {

node {
id
name
department {
name

}
}

}
}

}

20 Chapter 6. SQLAlchemy + Flask Tutorial

http://localhost:5000/graphql

CHAPTER 7

API Reference

7.1 SQLAlchemyObjectType

7.2 SQLAlchemyInterface

7.3 ORMField

7.4 SQLAlchemyConnectionField

21

	Getting Started
	Installation
	Examples

	Inheritance Examples
	Create interfaces from inheritance relationships
	Eager Loading & Using with AsyncSession

	Relay
	Tips
	Querying
	Sorting

	Schema Examples
	Search all Models with Union

	SQLAlchemy + Flask Tutorial
	Setup the Project
	Defining our models
	Schema
	Creating GraphQL and GraphiQL views in Flask
	Creating some data
	Testing our GraphQL schema

	API Reference
	SQLAlchemyObjectType
	SQLAlchemyInterface
	ORMField
	SQLAlchemyConnectionField

